2019

УДК 550.34

Геология

Том 18, № 1

Экспозиционный динамический инженерносейсмометрический мониторинг здания Института геофизики УрО РАН с применением аппаратнопрограммного комплекса «Регистр-SD»

М.Н. Воскресенский, Г.И. Парыгин, Т.Е. Сенина, Л.Н. Сенин

Институт геофизики им. Ю. П. Булашевича Уральского отделения Российской академии наук (ИГФ УрО РАН), Екатеринбург, ул. Амундсена, 100. E-mail: Voskresenskiy.mn@gmail.com

(Статья поступила в редакцию 17 сентября 2017 г.)

В 2017-2018 гг. проведен сейсмометрический мониторинг здания Института геофизики с помощью аппаратно-программного комплекса «Регистр-SD» и электродинамического датчика СК-1П. Сделан расчет периода собственных колебаний объекта на примере вертикального профиля, расположенного в юговосточном крыле. Результаты мониторинга показывают отсутствие нарушений на изучаемом участке. Ключевые слова: сейсмометрический мониторинг, регистратор сейсмических сигналов, амплитудночастотный спектр, период собственных колебаний объекта.

DOI: 10.17072/psu.geol.18.1.38

Введение

Известно, что сейсмический мониторинг относится к технологиям уменьшения риска опасных природных явлений. Он базируется на организации сети непрерывных долговременных наблюдений на исследуемой территории. В современной трактовке – это не только регистрация, но и дальнейшая оперативная обработка и интерпретация сейсмологических данных с выходом на прогнозные оценки.

Инженерно-сейсмометрический мониторинг, решая более конкретные задачи, предполагает наблюдение в объеме здания и его основания с целью выявления нарушения целостности и работоспособности объекта.

Экспозиционные наблюдения означают периодические измерения, точное повторение точек записи данных в пространстве, а также одинаковую ориентацию датчиков.

Исследование динамических характеристик здания или сооружения позволяет определить период собственных колебаний объекта в точках измерения.

Таким образом, основной задачей исследования является анализ изменения во времени периода собственных колебаний объекта в точках измерения с помощью аппаратно-программного комплекса «Регистр-SD» (Сенин, Сенина и др. 2017; Сенина, Воскресенский и др. 2017).

Информация об объекте исследования

На рис. 1 приведен вид сверху здания Института геофизики. Это кирпичное четырехэтажное здание, размером 100 на 20 м, с толщиной несущих стен 60-68 см, перекрытия выполнены из железобетонных плит (данные технического паспорта). Здание было построено в 1980 г., введено в эксплуатацию в 1981 г.

Вид сверху был получен при помощи карт Яндекса. На рисунке обозначено местоположение точек измерения. Выбраны четыре точки наблюдения, по одной на каждом этаже здания, а также вынос – точка измерения динамических характеристик грунта вне здания.

Методика измерений

Измерения проводились в марте 2017 и 2018 г., с использованием естественного сейсмического фона – микросейсмических шумов, которые регистрировались на каждом из этажей здания Института геофизики. Точки

[©] Воскресенский М.Н., Парыгин Г.И., Сенина Т.Е., Сенин Л.Н., 2019

наблюдения были выбраны в фойе юговосточного крыла. В каждой точке измерения сейсмоприемник располагался таким образом, что компонента Y была направлена вдоль короткой стороны здания (С-Ю), а компонента X – вдоль длинной (В-3) (см. рис. 1 и 2а). Длительность каждой записи 15 мин. Дальнейшая обработка и вычисления проводились на программном обеспечении, разработанном в ИГФ УрО РАН (Сенина, Воскресенский, 2016).

Рис.1. Вид сверху на здание ИГФ УрО РАН

Период основного тона собственных колебаний здания является важным расчетным параметром при анализе изменений его напряженно-деформированного состояния в процессе эксплуатации, в том числе при проведении обследований и мониторинга технического состояния. Стандартизация метода определения значения этого параметра проводится в соответствии со следующими документами: технический регламент о безопасности зданий и сооружений, введенный в действие Федеральным законом Российской Федерации от 30.12.2009 № 384-ФЗ, а также ГОСТ Р 53778-2010 (Здания и сооружения. Правила обследования и мониторинга технического состояния. Общие требования).

Для определения периода применяется не прямой, а косвенный метод. Регистрируется процесс колебания здания по трем взаимно перпендикулярным плоскостям, проводится спектральный анализ и вычисляется частота собственных колебаний объекта в точке измерения.

Полагая, что микросейсмические колебания представляют собой случайный процесс, стационарный во времени и пространстве (Медведев 1977), можно принять следующее положение. Каждая сейсмограмма достаточно большой продолжительности может быть заменена множеством коротких фрагментов такой же суммарной продолжительности. В соответствии с ГОСТ Р 54859-2011 для вычисления частоты собственных колебаний объекта необходимо провести n измерений, затем усреднить полученные значения. Таким образом, при вычислении используем п участков одной сейсмограммы с минимальным уровнем шума в качестве n измерений.

На рис.2а приведен пример сейсмограммы, записанной в нижней точке вертикального профиля, общей длительностью 15 мин. На рис. 2б показан фрагмент, длительностью 8 сек (или 1024 выборки).

Рис. 2а. Фрагмент сейсмограммы длительностью 15 мин

Рис. 26. Фрагмент сейсмограммы длительностью 8 сек (1024 выборки)

Данный фрагмент был выбран визуально, исходя из задачи определения участка записи с наименьшим уровнем шума.

На рис. 3 приведен расчет спектра выбранного фрагмента. Амплитудно-частотный спектр рассчитан с использованием 128точечного фильтра для диапазона частот 1-32 Гц, с шагом 0,01Гц. Максимальное значение амплитуды спектра наблюдается на частоте резонанса, именно это значение является частотой собственных колебаний объекта (для данной точки измерения). Ось Z – вертикальная составляющая; оси X и Y – это горизонтальные составляющие.

Рис. 3. Расчет спектра выбранного участка сейсмограммы (8 сек)

В процессе исследований в каждой точке записана сейсмограмма длительностью 15 мин. Из каждой сейсмограммы выбрано n = 30 коротких малошумящих участков. На рис. 4 показано среднее значение спектра, рассчитанное как среднее арифметическое значений спектров в каждом из тридцати измерений.

По оси абсцисс – значения диапазона частоты, в котором рассчитывался спектр, в герцах. По оси ординат – амплитуда, указанная в единицах разрядной сетки. Х, Ү, Z – взаимно-перпендикулярные оси трехкомпонентного датчика.

Рис. 4. *Среднее значение спектра, рассчитанное по п измерениям*

С целью анализа изменения периода собственных колебаний во времени были проведены измерения в марте 2017 и 2018 г. При измерении использовался аппаратнопрограммный комплекс «Регистр-SD», сейсмоприемник СК-1П, ориентация в пространстве сейсмоприемника и точки измерения были повторены.

Результаты исследования

В табл. 1 и 2 (март 2017 и 2018 г. соответственно) приведены значения частот, на которых наблюдаются первые три экстремума амплитудно-частотной характеристики, определенные по вычисленному среднему значению спектра. Частоты максимумов экстремумов приведены в порядке убывания амплитуды.

Анализируя и сравнивая уровень амплитуд АЧХ 2018 и 2017 г., скорректируем частоты основного тона колебания по оси Z на первом и четвертом этаже; по оси Y – на третьем этаже; по оси X – на третьем этаже. В табл. 3 приведен результат определения частоты собственных колебаний. В табл. 4 – результат измерений вне здания.

Таблица 1. Частоты максимумов экстремумов (2017 г.)

Этажи	Ζ, Гц			Х, Гц			Ү , Гц		
Ι	17,4	15,1	8,5	10,1	6,7	2,2	10,1	3,5	2,6
II	17,2	25,5	11,5	2,2	7,0	10,6	4	2,7	9,8
III	15,6	8,6	13,9	3,8	2,2	7,0	3,9	2,7	4,9
IV	16,2	14,9	8,6	2,2	3,8	11,1	3,9	2,7	4,9

Таблица 2. Частоты максимумов экстремумов (2018 г.)

Этажи	Ζ, Гц			Х, Гц			Ү, Гц		
Ι	14,8	8,9	23,4	10,8	7,6	2,2	10,1	2,7	3,5
II	16,7	23,5	11,2	2,2	7,0	3,9	4,1	2,7	10,2
III	15,8	11,1	23,4	2,2	3,9	7,0	2,7	4,1	5,0
IV	14,3	20,4	8,6	2,2	3,9	10,5	4,2	3,6	2,6

Таблица 3. Сводная таблица частот максимумов *АЧХ* (2017-2018гг.)

Этажи		2017 г.		2018 г.			
	Ζ, Γц	Х, Гц	Ү, Гц	Ζ, Гц	Х, Гц	Ү, Гц	
Ι	15,1	10,1	10,1	14,8	10,8	10,1	
II	17,2	2,2	4	16,7	2,2	4,1	
III	15,6	2,2	3,9	15,8	2,2	4,1	
IV	14,9	2,2	3,9	14,3	2,2	4,2	

Таблица 4. Измерения максимумов АЧХ на поверхности земли вне здания

	2018 г.					
Этаж	Z , Гц	Х, Гц	Ү, Гц			
Ι	15,7	11,4	12,0			

Таблица 5. Сводная таблица значений периода собственных колебаний

		2017 г	•	2018 г.			
Этажи	Z,	X,	Y,	Z,	X,	Ү, мс	
	мс	мс	мс	мс	мс		
Ι	66	99	99	68	93	99	
II	58	455	250	60	455	244	
III	64	455	256	63	455	244	
IV	67	455	256	70	455	238	

Целью проведенной работы был анализ изменения периода собственных колебаний объекта. Поэтому в табл. 5 приведены значения периода, вычисленного как значение, обратное частоте.

Выводы

Анализ изменения периода собственных колебаний во времени (мониторинговые исследования с периодичностью 1 раз в год) показывает, что различия результирующих значений лежат в пределах 10%. Таким образом, можно считать, что исследуемая часть здания находится в рабочем состоянии, критических нарушений не наблюдается.

Полученные результаты определения частот собственных колебаний объекта соответствуют справочным материалам, которые представлены в ГОСТ Р 54859-2011 (Приложение Ж): частоты собственных колебаний 4-этажного строения (кирпичное) в горизонтальных плоскостях лежат в диапазоне 2-5 Гц.

Проведены измерения и аналогичные расчеты на поверхности земли вне здания (вынос 20 м от нижней точки профиля). Результат измерений приведен в табл. 4. Резонанс в горизонтальных плоскостях наблюдается в диапазоне 11-12 Гц. Это наглядно показывает влияние верхней части геологического разреза на колебания здания: в горизонтальных плоскостях на первом этаже наблюдается первый максимум АЧХ, а на последующих этажах – второй-третий максимум АЧХ на частотах 10-11 Гц.

Отметим хорошую повторяемость результатов. Изменение характеристик в 2018 г. по оси Y обусловлено возросшей нагрузкой на здание со стороны ул. Вонсовского (см.рис.1, проезд автомобильного транспорта был открыт летом 2017 г.).

Библиографический список

Сенин Л. Н., Сенина Т. Е., Воскресенский М.Н. Аппаратно-программный комплекс «Регистр-SD» для изучения сейсмодинамических характеристик объектов, находящихся под воздействием упругих колебаний / МАИК «Наука» // Приборы и техника эксперимента. 2017. № 4. С. 157–158.

Сенина Т.Е., Сенин Л.Н., Воскресенский М.Н., Парыгин Г.И. Опыт совместного применения регистраторов сейсмических сигналов «Регистр» и «Reftek» при изучении сейсмодинамических характеристик строительного объекта// Девятые научные чтения Ю.П. Булашевича. Екатеринбург, 2017. С. 377-381.

Сенина Т. Е., Воскресенский М. Н. Программа обработки сейсмической информации Reg3MSD. Свидетельство № 2016618341. Зарегистрирована в Реестре программ для ЭВМ 27 июля 2016 г.

Сейсмическое микрорайонирование / под ред. д.т.н. С.В. Медведева. М.: Наука, 1977. 248 с.

Expositional Dynamic Engineering-Seismometric Monitoring of the Building of the Institute of Geophysics UB RAS with Use of the Hardware-Software Complex "Register-SD"

M.N. Voskresenskiy, G.I. Parygin, T.E. Senina, L.N. Senin

Institute of Geophysics of the Ural Branch of the Russian Academy of Science, 100 Amundsena Str., Ekaterinburg, Russia. E-mail: Voskresenskiy.mn@gmail.com

Seismometric monitoring of the building of the Institute of geophysics, located at Yekaterinburg was conducted in the period of 2017-2018. During the measurements, the hardware-software complex "Register-SD" with the electro-dynamic sensor SK-1P was used. The calculation of the period of natural oscillations of the object is given on the example of a vertical profile located in the south-eastern part of the building. The results of monitoring show that there are no failures in the studied section of the facility.

Key words: seismodynamic studies, seismometric monitoring, seismic signals recorder, amplitude-frequency spectrum, period of building natural oscillations.

References

Senin L.N., Senina T.E., Voskresenskiy M.N. 2017. Apparatno-programmnyy kompleks «Registr-SD» dlya izucheniya seysmodinamicheskikh kharakteristik obyektov, nakhodyashchikhsya pod vozdeystviem uprugikh kolebaniy [Hardware-software complex Registr-SD for study of seismodynamic characteristics of the objects under action of the elastic oscillations]. Pribory i tekhnika eksperimenta. 4:157–158. (in Russian)

Senina T.E., Senin L.N., Voskresenskiy M.N., Parygin G.I. 2017. Opyt sovmestnogo primeneniya registratorov seysmicheskikh signalov «Registr» i «Reftek» pri izuchenii seysmodinamicheskikh kharakteristik stroitelnogo obyekta [Case study of joint usage of the seismic recorders Registr and Reftek for studying the seismodynamic characteristics of the construction object]. Devyatye nauchnye chteniya Yu.P. Bulashevicha, pp. 377-381. (in Russian)

Senina T.E., Voskresenskiy M.N. Programma obrabotki seysmicheskoy informatsii Reg3MSD [Program of processing of the seismic information Reg3MSD]. Svidetelstvo № 2016618341. Zaregistrirovana v Reestre programm dlya EHVM 27 iyulya 2016. (in Russian)

Seysmicheskoe mikrorayonirovanie [Seismic microzonation]. Medvedev S.V. (*Ed.*). AN SSSR, Moskva, Nauka, 1977, p. 248. (in Russian)