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This study introduces a novel supervised workflow for predicting lithofacies in complex, heterogeneous tight 
sandstone reservoirs with intercalated facies. Using a two-information criteria clustering method, six distinct fa-
cies are identified, providing an unbiased, data-driven alternative to manual approaches. Among classification 
models, Gaussian Process Classification (GPC) outperforms others, including Support Vector Machine (SVM) 
and Artificial Neural Network (ANN), with Random Forest (RF) performing less effectively. GPC accurately 
predicts lithofacies in testing data and is assessed for similarity accuracy. Predicted lithofacies are integrated in-
to acoustic impedance versus velocity ratio cross plots, resulting in 2D probability density functions. These, 
combined with depth data, feed a neural network to forecast synthetic gamma-ray log responses. Results show 
strong agreement between measured and predicted gamma-ray logs (R2 = 0.978) and nearly identical log trends. 
Additionally, the predicted lithofacies are classified using inverted impedance and velocity ratio volumes, yield-
ing a facies prediction volume that aligns well with well site lithofacies classification, even without core data. 
Keywords: lithofacies prediction, complex sandstone reservoirs, synthetic gamma-ray logging, machine learn-
ing 
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Introduction 
 

Machine learning (ML) is a branch of artifi-
cial intelligence (AI) that utilizes data analysis 
techniques such as classification, regression, 
and clustering to make predictions and identify 
patterns in large datasets. The ML approach can 
be classified into two groups: supervised. Su-
pervised ML involves using input parameters 
and desired outputs to train a model, while ML 
identifies patterns without predefined outputs. 
In the oil and natural gas industry, machine 
learning has become a popular tool for solving 
geoscientific problems related to exploration, 
development, and production.Wire-line logs 
have become a commonly used tool for geosci-
entists in the oil and gas industry. With the de-
velopment of machine learning, various neural 

networks have been widely used in oil explora-
tion (Antariksa et al., 2022; Song et al., 2021; 
Valentín et al., 2019). Chawshin et al. (2021) 
designed a convolutional neural network (CNN) 
that automatically predicted lithofacies from 2D 
core CT scan image slices. Alzubaidi et al. 
(2019) introduced a CNN-based method that 
used core images to predict lithology automati-
cally, although it did not perform well in the 
subdivision of rock types. Zhang et al.(2021) 
used convolutional neural networks to identify 
lithofacies from core images. While these meth-
ods significantly reduced the identification time, 
they still required many core sample images for 
network training and labeling, which can be a 
challenge.To overcome this challenge, Zhang et 
al. (2021) used relatively low-cost well logs in-
stead of core samples for lithofacies identifica-
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tion. This approach effectively provided a first-
glance analysis of core data, although the mod-
el's generalization required improvements. De-
spite the limitations, machine-led applications 
hold great promise in the oil and natural gas in-
dustry, enabling more efficient and accurate ex-
ploration and production. 

The goal of this research is to investigate 
how supervised classification can improve the 
recognition of lithological facies in a dataset. 
The dataset consists of complex geometrically 
pro-gradational sequence environments that 
were formed during a significant tectonic event. 
This event not only affects the distribution of 
different facies but also leads to the presence of 
a large volume of volcaniclastic debris, which 
can negatively impact the quality of the reser-
voir. Accurately predicting facies is important 
because the Lower Goru formation in the Ka-
danwari gas field has the potential to produce 
significant amounts of natural gas. The process 
of facies categorization involves creating new 
logs, generating synthetic Gamma ray logs us-
ing machine learning regression models, and 
creating artificial data to fill in gaps in the da-
taset. The final step is to train the data samples 
using four different classification algorithms 
and select the most accurate facies classifier 
from the validation dataset. This study uses "en-
semble learning," which combines multiple 
models to improve accuracy.  

Area of Geology: 

The research area, Kadanwari, is located in 
the Southern Indus Basin, also known as the 
"Lower Indus Basin (LIB)." The Kadanwari gas 
field reservoir is comprised of typical Lower 
Goru formation sands in the D, E, and F layers, 
as well as the tight G layer (LB) (Figure 1) (Ali 
et al., 2019, 2020; Ashraf et al., 2020; Valzania 
et al., 2011). The development of the G sand 
member of the Lower Goru formation occurs 
during a significant tectonic event, resulting in a 
geometrically complex progradational sequence. 
This tectonic event not only impacts the distri-
bution of different facies but also leads to an 
abundance of volcaniclastic material, which can 
negatively affect the reservoir quality. The Ka-
danwari LB clastic deltaic system is dominated 
by rivers from the C to H layers and is only 
slightly modified by tides and waves. The au-
thors suggest that river dynamics influence both 
the sand-prone "proximal" facies (mainly cross-
bedded medium and coarse sandstones) and the 
fine-grained "distal" facies, characterized by 
extensive hummocky cross lamination. This 
phenomenon is associated with the creation of 
shelf hyperpycnal (density) flows during sea-
sonal flooding stages and significant storms 
(Afzal et al., 2009; Berger et al., 2009; Kazmi & 
Jan, 1997). The delta lobes deposited at differ-
ent stages vary in size and form (Figure 1). 

 

 

 
Figure 1: Sedimentology Model and lithology of the study area 
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Data and Methodology 

This study utilized a dataset comprising wire-
line log measurements of six parameters, name-
ly gamma ray (GR), laterolog deep resistivity 
(LLD), neutron porosity (NPHI), compressional 
wave velocity (DT), and bulk density (RHOB), 
as well as two petrophysical parameters esti-
mated from the data: volume of shale and poros-
ity. The wells sampled were located in the Low-
er Goru formation of the Kadanwari gas field 
block, which is situated in the central Indus Ba-
sin (Figure 2).  

K-15 and K-14 are wells that provide facies 
log and facies descriptions from geological data, 
which we utilized as the targeted output for the 
machine learning (ML) algorithms in our study. 
The lithology of the research area is classified 
into six categories, and each category is identi-

fied through meticulous petrophysical analysis 
and core investigation. Table 1contains the data 
and serves as a useful representation of the flu-
vial-based depositional system, using the facies 
nomenclature mentioned. 

Clusters selection criteria 

In the study, due to limited core facies data in 
the K-15 well (Figure 3), it's vital to select the 
right number of clusters for accurate facies rep-
resentation before applying machine learning 
algorithms. To avoid model bias from overfit-
ting or underfitting, two criteria are used. The 
Akaike Information Criterion (AIC) assesses a 
model's ability to predict future values based on 
in-sample fit, favoring lower AIC values and 
aiding in choosing between Holt-Winters mod-
els. The Bayesian Information 

 
Figure 2: Geographical distribution of wells in the study area 

 
Table 1: facies classification of Lower Goru 
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Figure 3: Visualize core facies data in the small section of well K-15 

Criterion (BIC) balances model complexity 
and fit, with lower values indicating a better fit. 
The study provides equations to compute AIC 
and BIC values for model selection, ensuring 
the optimal cluster number is chosen for ma-
chine learning in cases of limited core facies 
data in the K-15 well. 

One-Class Support Vector Machine (SVM): 
Support Vector Machine (SVM) is a supervised 
machine learning algorithm used for classifica-
tion and regression tasks(Vapnik, 1995). It finds 
the optimal hyperplane that best separates data 
points into different classes while maximizing 
the margin between them. SVM is effective in 
handling high-dimensional data and can also be 
used in non-linear scenarios by employing ker-
nel functions. 
Neural Network: 
A neural network is a computational model in-
spired by the structure and function of the hu-
man brain. It consists of interconnected nodes, 
or artificial neurons, organized in layers, which 
process and transform input data to produce 
output. Neural networks are used in various ma-
chine learning and deep learning tasks, such as 
image recognition, natural language processing, 

and more, by learning complex patterns and re-
lationships within data (Guresen & Kayakutlu, 
2011; Haykin, 2011). 
Random Forest: 
A random forest is an ensemble machine learn-
ing method that combines multiple decision 
trees to make more accurate predictions or clas-
sifications (Akkurt et al., 2018). It mitigates 
overfitting and increases the model's robustness 
by aggregating the results of individual trees, 
often resulting in improved performance and 
generalization. 
Data Split and Cross-Validation: 
In machine learning, data partitioning is critical 
to ensure effective model evaluation on new da-
ta. Typically, data is split into a training set for 
model training and a testing set for final evalua-
tion (Alghazal & Krinis, 2021). For small da-
tasets, the risk of overfitting to the training data 
is a concern. To address this, cross-validation is 
used. It involves breaking the training set into 
multiple folds. The model is evaluated on each 
fold while being trained on the others, reducing 
overfitting. After cross-validation, the model 
with the best score is selected and used to pre-
dict the testing set for the final evaluation (Fig-
ure 4). 
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Figure 4:The visual representation of the dataset is divided into two sets. The first one is training and the 
second one is testing the dataset for the machine learning model 

 
Feature Selection: 
Feature selection is a crucial step in reducing 
dataset complexity by removing irrelevant fea-
tures. It benefits machine learning in several 
ways (Ali et al., 2021; Guyon & Elisseeff, 2003; 
Li et al., 2017), including simplifying models, 
saving time and costs, reducing overfitting risk, 
and mitigating data dimensionality issues. This 
study employed two feature selection methods: 
univariate and Pearson's Correlation (r). Uni-
variate selection individually tests each feature's 
relationship with the target variable. Pearson's 
Correlation measures the strength of linear rela-
tionships between pairs of variables, with values 
ranging from -1 to +1, where 0 implies no corre-
lation, negative values indicate a negative corre-
lation, and positive values indicate a positive 
correlation. 
 
Criteria for verifying model performance: 

The classification performance of the 
models was verified using a standardized confu-
sion matrix since its proposals detailed statisti-
cal results for both correctly and incorrectly 
classified lithofacies (Alghazal & Krinis, 2021). 
Precision, recall, and F-1 scores were all em-
ployed as verification metrics (Eqs. (1) – (3)). 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
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 (1) 
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Result and discussion: 
This section has multiple parts. First, we deter-
mine the cluster count in the study area using 
our novel algorithm from previous section. 
Then, we reduce dataset complexity with feature 
selection techniques, normalizing features for 
better machine learning convergence. In the 
third part, we compare lithology identification 
results for each model. Next, we evaluate algo-
rithm efficiency. Finally, we apply the final 
model to predict well facies and check the pre-
diction accuracy based on synchronization 
measures for synthetic logs. 
 
Cluster Analysis: 
The pivotal step in clustering analysis is visually 
assessing the two-information criteria plot to 
pinpoint the ideal number of clusters. This is 
done by identifying inflection points in the Eu-
clidean distance plot, which indicate that further 
clusters do not significantly enhance data char-
acterization. In Figure 5, the AIC/BIC curves 
level off at six clusters, signifying an effective 
model for describing the study area well logs' 
facies. 
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Figure 5. Determining the optimal number of clusters using the two-information criteria plot 

Feature selection: 
Before model training, selecting the most rele-
vant feature with a strong target correlation is 
vital. In this study, eight logging curves were 
chosen, excluding TVD, LLM, and LLS. Re-
sults in Figure 6 show Gamma (GR) had the 
highest impact (Influence Factor 36.21), fol-
lowed by Deep Resistivity (LLD, 16.04), Com-
pressional Sonic (DT, 13.17), Density (RHOB, 
9.85), and Neutron (NPHI, 7.70). Photoelectric 
factor (PEF), Spontaneous potential (SP), and 
Caliper (CAL) were least impactful (Influence 
Factors ≤6). Thus, the top four inputs (GR, LLD, 

DT, RHOB) are most crucial for facies evalua-
tion. 
After estimating the cluster count from the two-
information criteria plot, core facies and select-
ed logs are added to the training data, leaving 
out the blind/testing well. One well's data is re-
served for algorithm evaluation. Figure 7 shows 
the facies distribution in the training dataset, 
highlighting the underrepresentation of High-
porosity, high-permeability sandstone (Ss) faci-
es compared to others. To enhance prediction 
models, more Ss facies samples should be ob-
tained. 

 

 

Figure 6. Feature importance scores of input features versus core facies  
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Figure 7. Facies (class) distribution of the training data 

Facies predictions utilizing ML models and 
comparison: 

In our study, we evaluated ML models for fa-
cies prediction. Initially, default models were 
tested on the training dataset using confusion 
matrices to measure accuracy. This tool helps 
assess model effectiveness and estimate mis-
classification losses. For identification perfor-
mance, we used metrics like precision, recall, 
and F1-score. Figure 8 displays model perfor-
mance. GPC excelled, followed by SVM and 
ANN, while RF performed the poorest. In li-
thology identification, ensemble models outper-
formed RF, with GPC leading. Different models 
had varying success with different facies types. 
While all performed well with certain facies, RF 

struggled with Ss. GPC performed the best 
overall, slightly outperforming ANN. SVM was 
weaker in identifying Hs, LSs, CSs, and Sh 
compared to ANN, highlighting ensemble mod-
els' advantage with non-uniform facies. Figure 8 
shows confusion matrices, illustrating how pre-
dicted facies compare to actual facies for each 
lithofacies. For instance, in the GPC model's 
matrix, common misclassifications included 3% 
of samples as Hs, CSs, and Sh, and 3% of CSs 
samples as Sh. These errors result from overlap-
ping logging features in the misclassified litho-
facies. Nevertheless, the GPC model outper-
formed others, achieving high lithofacies pre-
diction accuracy, as shown in Figure 8. 

 

Figure 8. Confusion Matrix of SVM, ANN, GPC, and RF facies prediction outcomes and Specific facies are 
identified by their labels and explained in the table 
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Figure 9. The prediction results of final models for K-14 well (blind well) 

In the last step, we used the GPC model to 
predict lithofacies in the testing dataset and 
checked the accuracy based on synchronization 
measures for synthetic logs. Utilizing core data 
from K-15 wells, we extended facies predictions 
to wells without core data. Figure 9 shows the 
facies distribution in a blind well using the GPC 
model. The first four plots display measured 
logs with depth (in meters), and the last track 
shows the predicted facies track by GPC. 

To assess facies prediction accuracy without 
ground truth data in Figure 9 (blind well K-14), 
a novel technique was used. It confirmed pre-
dictions by leveraging elastic parameters such 
as acoustic impedance and velocity ratio, which 
are linked to reservoir quality and lithofacies. 
An acoustic impedance vs velocity ratio cross 
plot was generated for the blind well based on 
predicted lithofacies, producing 2D probability 
density functions (PDFs) (Figure 10a and b). 
These PDFs represent each sample's similarity 
to data points within its cluster and dissimilarity 
to those outside its cluster. They were then used 
as input with depth in a neural network to pre-
dict synthetic gamma-ray log responses (Figure 
10c). Since the gamma-ray log is crucial for 
rock type differentiation, its prediction accuracy 
was evaluated using synchronization measures. 
Figure 10d compares actual gamma logs (GR) 

with predicted synthetic logs (Syn_GR) from 
the neural network, showing visually satisfacto-
ry results with nearly identical average log 
trends. Cross plots between measured GR and 
predicted Syn_GR from the machine learning 
algorithm for blind wells are displayed in Figure 
10e. These plots quantitatively measure the al-
gorithm's predictive ability, yielding a satisfac-
tory R2 value of 0.978. 

After predicting lithofacies using well log da-
ta, the inverted acoustic impedance and Vp/Vs 
volumes were used to classify the predicted 
lithofacies. This information was then used to 
construct a facies prediction volume. The in-
verted facies volume is strongly correlated with 
the predicted lithofacies at the well locations 
(Figure 11a). To ensure quality control, the Vp 
log was compared to the Vp modeled from the 
predicted porosity volume generated from in-
version utilizing the facies model, and the Vp 
modeled from the original porosity log. The 
modeled Vp calculated based on the porosity 
log correlates well with the Vp log, and the pre-
dicted Vp from inversion shows good correla-
tion with the measured log (Figure 11b), espe-
cially in the upper section of the well where the 
reservoir facies are present. Overall, the model 
performs very well and effectively differentiates 
the rock types. 
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Figure 10. Result of the blind well (a) predicted lithofacies (b) based on lithofacies extract PDFs (c) utilized 
neural network to predicted synthetic log (d) actual and predicted gamma-ray log response comparison trend 
(e) check the prediction accuracy result by the least square method 

 

Figure 11. Displays two panels: (a) the facies prediction volume generated by classifying the predicted 
lithofacies using the inverted acoustic impedance and Vp/Vs volumes, and (b) a comparison of the original 
Vp log, Vp predicted from the facies model applied on the original porosity log, and modeled Vp obtained 
from the predicted porosity volume derived from inversion using the facies model 
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Conclusion: 

A new workflow for lithofacies prediction 
using supervised machine learning algorithms 
was developed. The novel two-information cri-
teria clustering approach generated facies that 
were strictly data-driven. Four supervised ma-
chine learning classifiers were employed, with 
the GPC model achieving the highest identifi-
cation performance. The GPC model was used 
to predict lithofacies in the testing dataset and 
the accuracy of facies similarity was assessed 
by synchronization measures to predict syn-
thetic logs. A 2D probability density function 
was generated from an acoustic impedance vs 
velocity ratio cross plot of a blind well based 
on the predicted lithofacies. This was used as 
input with depth in a neural network to predict 
synthetic gamma-ray log response. The results 
obtained from the neural network were visually 
satisfactory, with a high correlation between 
the measured GR and predicted Syn_GR from 
the machine learning algorithm at blind wells 
(R2 of 0.978). Finally, the predicted lithofacies 
were used to create a facies prediction volume, 
which correlated well with the predicted litho-
facies classification. The workflow provides 
consistent, reliable, and efficient results, saving 
time and effort in data processing and interpre-
tation. 
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В этом исследовании представлен новый контролируемый техпроцесс (методика) для прогнозирова-
ния литофаций в сложных, неоднородных коллекторах из плотного песчаника с промежуточными 
фациями. Используя метод кластеризации с двумя информационными критериями, идентифициру-
ются шесть различных фаций, что обеспечивает объективную, основанную на данных, альтернативу 
ручным подходам. Среди моделей классификации именно классификация гауссовских процессов 
(КГП) превосходит другие, в том числе машину опорных векторов (МОВ) и искусственную нейрон-
ную сеть (ИНС), при этом случайный лес (СЛ) работает менее эффективно. КГП точно предсказыва-
ет литофации в данных тестирования и оценивается на предмет точности сходства. Прогнозируемые 
литофации интегрируются в кросс-графики зависимости акустического импеданса от отношения 
скоростей, в результате чего получаются двумерные функции плотности вероятностей. В сочетании 
с данными о глубине они поступают в нейронную сеть для прогнозирования результатов синтетиче-
ского гамма-каротажа. Результаты демонстрируют близкое согласование между измеренными и про-
гнозируемыми данными гамма-каротажа (R2 = 0,978) и почти идентичные тенденции (формы ано-
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малий) каротажных диаграмм. Кроме того, прогнозируемые литофации классифицируются с исполь-
зованием инвертированных объемов импеданса и отношения скоростей, что дает прогнозируемый 
объем фаций, который хорошо согласуется с классификацией литофаций скважины, даже без керно-
вых данных. 
Ключевые слова: прогнозирование литофаций, сложные песчаные коллекторы, синтетический гамма-

каротаж, машинное обучение. 
 

 


