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This study introduces a novel supervised workflow for predicting lithofacies in complex, heterogeneous tight
sandstone reservoirs with intercalated facies. Using a two-information criteria clustering method, six distinct fa-
cies are identified, providing an unbiased, data-driven alternative to manual approaches. Among classification
models, Gaussian Process Classification (GPC) outperforms others, including Support Vector Machine (SVM)
and Artificial Neural Network (ANN), with Random Forest (RF) performing less effectively. GPC accurately
predicts lithofacies in testing data and is assessed for similarity accuracy. Predicted lithofacies are integrated in-
to acoustic impedance versus velocity ratio cross plots, resulting in 2D probability density functions. These,
combined with depth data, feed a neural network to forecast synthetic gamma-ray log responses. Results show
strong agreement between measured and predicted gamma-ray logs (R2 = 0.978) and nearly identical log trends.
Additionally, the predicted lithofacies are classified using inverted impedance and velocity ratio volumes, yield-
ing a facies prediction volume that aligns well with well site lithofacies classification, even without core data.
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Introduction

Machine learning (ML) is a branch of artifi-
cial intelligence (Al) that utilizes data analysis
techniques such as classification, regression,
and clustering to make predictions and identify
patterns in large datasets. The ML approach can
be classified into two groups: supervised. Su-
pervised ML involves using input parameters
and desired outputs to train a model, while ML
identifies patterns without predefined outputs.
In the oil and natural gas industry, machine
learning has become a popular tool for solving
geoscientific problems related to exploration,
development, and production.Wire-line logs
have become a commonly used tool for geosci-
entists in the oil and gas industry. With the de-
velopment of machine learning, various neural

© Muhammad Ali, 2023

networks have been widely used in oil explora-
tion (Antariksa et al., 2022; Song et al., 2021;
Valentin et al., 2019). Chawshin et al. (2021)
designed a convolutional neural network (CNN)
that automatically predicted lithofacies from 2D
core CT scan image slices. Alzubaidi et al.
(2019) introduced a CNN-based method that
used core images to predict lithology automati-
cally, although it did not perform well in the
subdivision of rock types. Zhang et al.(2021)
used convolutional neural networks to identify
lithofacies from core images. While these meth-
ods significantly reduced the identification time,
they still required many core sample images for
network training and labeling, which can be a
challenge.To overcome this challenge, Zhang et
al. (2021) used relatively low-cost well logs in-
stead of core samples for lithofacies identifica-
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tion. This approach effectively provided a first-
glance analysis of core data, although the mod-
el's generalization required improvements. De-
spite the limitations, machine-led applications
hold great promise in the oil and natural gas in-
dustry, enabling more efficient and accurate ex-
ploration and production.

The goal of this research is to investigate
how supervised classification can improve the
recognition of lithological facies in a dataset.
The dataset consists of complex geometrically
pro-gradational sequence environments that
were formed during a significant tectonic event.
This event not only affects the distribution of
different facies but also leads to the presence of
a large volume of volcaniclastic debris, which
can negatively impact the quality of the reser-
voir. Accurately predicting facies is important
because the Lower Goru formation in the Ka-
danwari gas field has the potential to produce
significant amounts of natural gas. The process
of facies categorization involves creating new
logs, generating synthetic Gamma ray logs us-
ing machine learning regression models, and
creating artificial data to fill in gaps in the da-
taset. The final step is to train the data samples
using four different classification algorithms
and select the most accurate facies classifier
from the validation dataset. This study uses "en-
semble learning," which combines multiple
models to improve accuracy.
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Area of Geology:

The research area, Kadanwari, is located in
the Southern Indus Basin, also known as the
"Lower Indus Basin (LIB)." The Kadanwari gas
field reservoir is comprised of typical Lower
Goru formation sands in the D, E, and F layers,
as well as the tight G layer (LB) (Figure 1) (Ali
et al., 2019, 2020; Ashraf et al., 2020; Valzania
et al., 2011). The development of the G sand
member of the Lower Goru formation occurs
during a significant tectonic event, resulting in a
geometrically complex progradational sequence.
This tectonic event not only impacts the distri-
bution of different facies but also leads to an
abundance of volcaniclastic material, which can
negatively affect the reservoir quality. The Ka-
danwari LB clastic deltaic system is dominated
by rivers from the C to H layers and is only
slightly modified by tides and waves. The au-
thors suggest that river dynamics influence both
the sand-prone "proximal" facies (mainly cross-
bedded medium and coarse sandstones) and the
fine-grained "distal" facies, characterized by
extensive hummocky cross lamination. This
phenomenon is associated with the creation of
shelf hyperpycnal (density) flows during sea-
sonal flooding stages and significant storms
(Afzal et al., 2009; Berger et al., 2009; Kazmi &
Jan, 1997). The delta lobes deposited at differ-
ent stages vary in size and form (Figure 1).
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Figure 1: Sedimentology Model and lithology of the study area
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Data and Methodology

This study utilized a dataset comprising wire-
line log measurements of six parameters, name-
ly gamma ray (GR), laterolog deep resistivity
(LLD), neutron porosity (NPHI), compressional
wave velocity (DT), and bulk density (RHOB),
as well as two petrophysical parameters esti-
mated from the data: volume of shale and poros-
ity. The wells sampled were located in the Low-
er Goru formation of the Kadanwari gas field
block, which is situated in the central Indus Ba-
sin (Figure 2).

K-15 and K-14 are wells that provide facies
log and facies descriptions from geological data,
which we utilized as the targeted output for the
machine learning (ML) algorithms in our study.
The lithology of the research area is classified
into six categories, and each category is identi-

0.0E

fied through meticulous petrophysical analysis
and core investigation. Table 1contains the data
and serves as a useful representation of the flu-
vial-based depositional system, using the facies
nomenclature mentioned.

Clusters selection criteria

In the study, due to limited core facies data in
the K-15 well (Figure 3), it's vital to select the
right number of clusters for accurate facies rep-
resentation before applying machine learning
algorithms. To avoid model bias from overfit-
ting or underfitting, two criteria are used. The
Akaike Information Criterion (AIC) assesses a
model's ability to predict future values based on
in-sample fit, favoring lower AIC values and
aiding in choosing between Holt-Winters mod-
els. The Bayesian Information
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Figure 2: Geographical distribution of wells in the study area

Table 1: facies classification of Lower Goru

Facies Description
Sh Shale to silty Shale (Shelf deposits)
Slst Siltstone to silty-shaly sandstone (prodelta shales with turbiditic layers)
Css Low-porosity, low permeability cemented sandstone (very distal mouth bar fringe)
Lss Low-medium porosity, low permeability sideritic/chamositic sandstone (shoreface to distal mouth bar)
Ss High-porosity, high permeability sandstone (mouth bar)
Hs Highly chamosite/siderite affected lithologies (chamositized mouth bar)
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Figure 3: Visualize core facies data in the small section of well K-15

Criterion (BIC) balances model complexity
and fit, with lower values indicating a better fit.
The study provides equations to compute AIC
and BIC values for model selection, ensuring
the optimal cluster number is chosen for ma-
chine learning in cases of limited core facies
data in the K-15 well.

One-Class Support Vector Machine (SVM):
Support Vector Machine (SVM) is a supervised
machine learning algorithm used for classifica-
tion and regression tasks(Vapnik, 1995). It finds
the optimal hyperplane that best separates data
points into different classes while maximizing
the margin between them. SVM is effective in
handling high-dimensional data and can also be
used in non-linear scenarios by employing ker-
nel functions.

Neural Network:

A neural network is a computational model in-
spired by the structure and function of the hu-
man brain. It consists of interconnected nodes,
or artificial neurons, organized in layers, which
process and transform input data to produce
output. Neural networks are used in various ma-
chine learning and deep learning tasks, such as
image recognition, natural language processing,

and more, by learning complex patterns and re-
lationships within data (Guresen & Kayakutlu,
2011; Haykin, 2011).

Random Forest:

A random forest is an ensemble machine learn-
ing method that combines multiple decision
trees to make more accurate predictions or clas-
sifications (Akkurt et al., 2018). It mitigates
overfitting and increases the model's robustness
by aggregating the results of individual trees,
often resulting in improved performance and
generalization.

Data Split and Cross-Validation:

In machine learning, data partitioning is critical
to ensure effective model evaluation on new da-
ta. Typically, data is split into a training set for
model training and a testing set for final evalua-
tion (Alghazal & Krinis, 2021). For small da-
tasets, the risk of overfitting to the training data
1s a concern. To address this, cross-validation is
used. It involves breaking the training set into
multiple folds. The model is evaluated on each
fold while being trained on the others, reducing
overfitting. After cross-validation, the model
with the best score is selected and used to pre-
dict the testing set for the final evaluation (Fig-
ure 4).
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Figure 4:The visual representation of the dataset is divided into two sets. The first one is training and the
second one is testing the dataset for the machine learning model

Feature Selection:

Feature selection is a crucial step in reducing
dataset complexity by removing irrelevant fea-
tures. It benefits machine learning in several
ways (Ali et al., 2021; Guyon & Elisseeft, 2003;
Li et al., 2017), including simplifying models,
saving time and costs, reducing overfitting risk,
and mitigating data dimensionality issues. This
study employed two feature selection methods:
univariate and Pearson's Correlation (r). Uni-
variate selection individually tests each feature's
relationship with the target variable. Pearson's
Correlation measures the strength of linear rela-
tionships between pairs of variables, with values
ranging from -1 to +1, where 0 implies no corre-
lation, negative values indicate a negative corre-
lation, and positive values indicate a positive
correlation.

Criteria for verifying model performance:
The classification performance of the
models was verified using a standardized confu-
sion matrix since its proposals detailed statisti-
cal results for both correctly and incorrectly
classified lithofacies (Alghazal & Krinis, 2021).
Precision, recall, and F-1 scores were all em-
ployed as verification metrics (Egs. (1) — (3)).
True positive (1)

Precision = — —
True positive + False positive

True positive )
Recall = — :
True positive + False negative
1 1 ( 1 + 1 ) 3)
F, ~ 2\Precision = Recall

Result and discussion:

This section has multiple parts. First, we deter-
mine the cluster count in the study area using
our novel algorithm from previous section.
Then, we reduce dataset complexity with feature
selection techniques, normalizing features for
better machine learning convergence. In the
third part, we compare lithology identification
results for each model. Next, we evaluate algo-
rithm efficiency. Finally, we apply the final
model to predict well facies and check the pre-
diction accuracy based on synchronization
measures for synthetic logs.

Cluster Analysis:

The pivotal step in clustering analysis is visually
assessing the two-information criteria plot to
pinpoint the ideal number of clusters. This is
done by identifying inflection points in the Eu-
clidean distance plot, which indicate that further
clusters do not significantly enhance data char-
acterization. In Figure 5, the AIC/BIC curves
level off at six clusters, signifying an effective
model for describing the study area well logs'
facies.
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Figure 5. Determining the optimal number of clusters using the two-information criteria plot

Feature selection:

Before model training, selecting the most rele-
vant feature with a strong target correlation is
vital. In this study, eight logging curves were
chosen, excluding TVD, LLM, and LLS. Re-
sults in Figure 6 show Gamma (GR) had the
highest impact (Influence Factor 36.21), fol-
lowed by Deep Resistivity (LLD, 16.04), Com-
pressional Sonic (DT, 13.17), Density (RHOB,
9.85), and Neutron (NPHI, 7.70). Photoelectric
factor (PEF), Spontaneous potential (SP), and
Caliper (CAL) were least impactful (Influence
Factors <6). Thus, the top four inputs (GR, LLD,

DT, RHOB) are most crucial for facies evalua-
tion.

After estimating the cluster count from the two-
information criteria plot, core facies and select-
ed logs are added to the training data, leaving
out the blind/testing well. One well's data is re-
served for algorithm evaluation. Figure 7 shows
the facies distribution in the training dataset,
highlighting the underrepresentation of High-
porosity, high-permeability sandstone (Ss) faci-
es compared to others. To enhance prediction
models, more Ss facies samples should be ob-
tained.

Feature Selection Importance
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Figure 6. Feature importance scores of input features versus core facies
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Figure 7. Facies (class) distribution of the training data

Facies predictions utilizing ML models and
comparison:

In our study, we evaluated ML models for fa-
cies prediction. Initially, default models were
tested on the training dataset using confusion
matrices to measure accuracy. This tool helps
assess model effectiveness and estimate mis-
classification losses. For identification perfor-
mance, we used metrics like precision, recall,
and Fl-score. Figure 8 displays model perfor-
mance. GPC excelled, followed by SVM and
ANN, while RF performed the poorest. In li-
thology identification, ensemble models outper-
formed RF, with GPC leading. Different models
had varying success with different facies types.
While all performed well with certain facies, RF

struggled with Ss. GPC performed the best
overall, slightly outperforming ANN. SVM was
weaker in identifying Hs, LSs, CSs, and Sh
compared to ANN, highlighting ensemble mod-
els' advantage with non-uniform facies. Figure 8
shows confusion matrices, illustrating how pre-
dicted facies compare to actual facies for each
lithofacies. For instance, in the GPC model's
matrix, common misclassifications included 3%
of samples as Hs, CSs, and Sh, and 3% of CSs
samples as Sh. These errors result from overlap-
ping logging features in the misclassified litho-
facies. Nevertheless, the GPC model outper-
formed others, achieving high lithofacies pre-
diction accuracy, as shown in Figure 8.

Conlusion Matrix Based on SVM Model

Confuston Matrix Based on ANN Model

Prediction Slat Hs L5 S (853 Sh Tatal Pradienan Slst Hs .55 e CSs ShT “Total
Skt 0 5 1 0 11 21 Slst 9 9 0 0 0 3 21
Hs 1 16 2 0 0 0 1 Hs 1 16 2 0 0 0 13
LSs ] 0 1§ L] 0 0 13 L3 0 0 16 2 0 0 18
s [0 ] 1w 7 0 i 7 S8 0 0 0 17 0 0 17
Chs 0 1 1] 0 37 0 3 (&5 0 1 0 0 35 1 38
sh [ [ 0 0 6 33 3 Sh 1 (1] 0 9 3 EE) EE]

l'able: Prediction Accuracy Seore I'able: Prediction Accuracy Seore

Precision 067 (33 0.3k 1 0.8 075 0.76 Precision 0.82 0.62 0.8%9 0.89 0.92 0.88 0.85

Recall il 84 1 041 047 [IR5) 074 Recall 043 0.84 0.89 1 0,92 09 0.84
il 017 0.7 07 0155 089 08 07 Fl 0.56 0.71 0.8% 0.94 092 0.89 0.84

Confusion Matrix Rased on GPC Model

Confusion Matrix Based on RF Mode]

Prediction St Hs 185 S {55 Sh Tofal

Prediction | gjer Hs 155 5 & sh Tatal
Slst 16 3 [i] (1] 1 1 21 Slst 16 3 0 0 1] 2 21
Hs 1 16 2 0 0 [} 19 s g 12 2 0 0 ] 19
Lss 0 0 17 1 0 ] 18 1.8 [} i) 1% 0 0 1 1%
S5 [1] 1] L1} 17 1] [ 17 Ss 0 i) 17 1 0 1] 17
Css 0 1 0 36 L 18 CSs il 1 4 0 2 0 3
sh 0 0 i 1] 3 36 39 Sh [ 1] 1] 0 9 30 39

Table: Prediction Accuracy Score Table: Prediction Aceusacy Seore

Precision 0.4 08 089 0.94 0.9 0.05 091 Precision 073 0,75 .44 0 0.7% 0.94 .68
Reeall 1176 0184 1194 1 1193 092 091 Recall (076 063 1 1 .34 077 071
¥l 084 082 0.2 0.97 0.92 0.94 091 Il 0.74 0.69 0.61 0 .81 0.85 068

Figure 8. Confusion Matrix of SVM, ANN, GPC, and RF facies prediction outcomes and Specific facies are

identified by their labels and explained in the table
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Figure 9. The prediction results of final models for K-14 well (blind well)

In the last step, we used the GPC model to
predict lithofacies in the testing dataset and
checked the accuracy based on synchronization
measures for synthetic logs. Utilizing core data
from K-15 wells, we extended facies predictions
to wells without core data. Figure 9 shows the
facies distribution in a blind well using the GPC
model. The first four plots display measured
logs with depth (in meters), and the last track
shows the predicted facies track by GPC.

To assess facies prediction accuracy without
ground truth data in Figure 9 (blind well K-14),
a novel technique was used. It confirmed pre-
dictions by leveraging elastic parameters such
as acoustic impedance and velocity ratio, which
are linked to reservoir quality and lithofacies.
An acoustic impedance vs velocity ratio cross
plot was generated for the blind well based on
predicted lithofacies, producing 2D probability
density functions (PDFs) (Figure 10a and b).
These PDFs represent each sample's similarity
to data points within its cluster and dissimilarity
to those outside its cluster. They were then used
as input with depth in a neural network to pre-
dict synthetic gamma-ray log responses (Figure
10c). Since the gamma-ray log is crucial for
rock type differentiation, its prediction accuracy
was evaluated using synchronization measures.
Figure 10d compares actual gamma logs (GR)

with predicted synthetic logs (Syn GR) from
the neural network, showing visually satisfacto-
ry results with nearly identical average log
trends. Cross plots between measured GR and
predicted Syn GR from the machine learning
algorithm for blind wells are displayed in Figure
10e. These plots quantitatively measure the al-
gorithm's predictive ability, yielding a satisfac-
tory R2 value of 0.978.

After predicting lithofacies using well log da-
ta, the inverted acoustic impedance and Vp/Vs
volumes were used to classify the predicted
lithofacies. This information was then used to
construct a facies prediction volume. The in-
verted facies volume is strongly correlated with
the predicted lithofacies at the well locations
(Figure 11a). To ensure quality control, the Vp
log was compared to the Vp modeled from the
predicted porosity volume generated from in-
version utilizing the facies model, and the Vp
modeled from the original porosity log. The
modeled Vp calculated based on the porosity
log correlates well with the Vp log, and the pre-
dicted Vp from inversion shows good correla-
tion with the measured log (Figure 11b), espe-
cially in the upper section of the well where the
reservoir facies are present. Overall, the model
performs very well and effectively differentiates
the rock types.
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Figure 11. Displays two panels: (a) the facies prediction volume generated by classifying the predicted
lithofacies using the inverted acoustic impedance and Vp/Vs volumes, and (b) a comparison of the original
Vp log, Vp predicted from the facies model applied on the original porosity log, and modeled Vp obtained
from the predicted porosity volume derived from inversion using the facies model
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Conclusion:

A new workflow for lithofacies prediction
using supervised machine learning algorithms
was developed. The novel two-information cri-
teria clustering approach generated facies that
were strictly data-driven. Four supervised ma-
chine learning classifiers were employed, with
the GPC model achieving the highest identifi-
cation performance. The GPC model was used
to predict lithofacies in the testing dataset and
the accuracy of facies similarity was assessed
by synchronization measures to predict syn-
thetic logs. A 2D probability density function
was generated from an acoustic impedance vs
velocity ratio cross plot of a blind well based
on the predicted lithofacies. This was used as
input with depth in a neural network to predict
synthetic gamma-ray log response. The results
obtained from the neural network were visually
satisfactory, with a high correlation between
the measured GR and predicted Syn GR from
the machine learning algorithm at blind wells
(R2 of 0.978). Finally, the predicted lithofacies
were used to create a facies prediction volume,
which correlated well with the predicted litho-
facies classification. The workflow provides
consistent, reliable, and efficient results, saving
time and effort in data processing and interpre-
tation.
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B 3TOM HCCilenoBaHUM MPEICTaBICH HOBBIM KOHTPOIMPYEMBIH TeXIpolecc (METOANKA) IS IPOTHO3UPOBa-
HUS IuTO(annii B CIOXKHBIX, HEOJHOPOAHBIX KOJUIEKTOpaX M3 IUIOTHOTO MECYaHHKa C MPOMEKYTOUYHBIMU
¢damusamu. Mcnonb3ys MeToJ KilacTepu3aluu ¢ IByMs MH()OPMAaLMOHHBIMH KPUTEPUSIMH, UACHTU(UIUDY-
I0TCSI ECTh Pa3IMYHBIX (aluii, 4To obecrneuynBaeT 00bEKTUBHYIO, OCHOBAaHHYIO Ha JJAHHBIX, aJIbTEPHATHBY
pyuHbIM mogxogam. Cpeanm Mozeneil kiaccH(pUKaUMM MMEHHO KJIAcCH(UKAIUS TayCCOBCKHX IPOLECCOB
(KT'TI) mpeBOCXOAMT Ipyrye, B TOM YUCJIE MAaLIMHY ONOPHBIX BekTopoB (MOB) 1 ucKkyccTBeHHYI0 HEHpPOH-
nyto cetb (MHC), npu atom ciyuaitnsiit nec (CJI) padoraet menee apdexruuo. KI'TI Touno npenckaspia-
eT auTodaly B JAHHBIX TECTUPOBAHUS U OIICHUBAETCA HA NMPEIMET TOYHOCTH CXOACTBA. [IporHO3MpyeMbIe
TUTO(alu WHTETPUPYIOTCS B Kpocc-rpad)MKHM 3aBUCUMOCTH aKyCTHYECKOI'O HMMIIEJAaHCa OT OTHOLICHHS
CKOpOCTEH, B pe3yibTare Yero MnoJiy4yaloTcs JAByMepHbIe (YHKLUH MIOTHOCTH BEpPOsTHOCTEH. B coueranumn
C ITaHHBIMU O TIIyOMHE OHH IOCTYNAlOT B HEHPOHHYIO CETh AJS MPOTHO3HPOBAHMS PE3yIbTaTOB CHHTECTHYC-
CKOTO TaMMa-KapoTaka. Pe3ynbTaTel AEMOHCTPUPYIOT OIU3KOE COTNIACOBAHUE MEKAY M3MEPEHHBIMHU U IIPO-
THO3MPYEMBIMH JTaHHBIMU ramma-kaporaxa (R2 = 0,978) u moutn maeHTH4YHBIE TeHASHUUHU (POPMBI aHO-
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MaJnii) KapoTaXXHBIX auarpamMm. KpoMme Toro, mporuo3upyembie TUTOdaiuu KaaccuQuuupyrTCs ¢ UCIOJIb-

30BaHHEM HWHBEPTHPOBAHHBIX OOEMOB HMMIIEJAHCA M OTHOIICHUS CKOPOCTEH, 4TO JaeT MPOTrHO3UPYEMbIN

0o6beM (aruii, KOTOPHIM XOPOIIO CoTiIacyeTcs ¢ Kiaaccupukanueil TuTodanuii CKBaXXHHBI, 1axe 0e3 KepHO-

BBIX JIaHHBIX.

KitroueBbie ClIOBa: npocHosuposanue 1umo@ayutl, Cl0dCHble Necuamnvle KOLIEeKMOpbl, CUHMEMUYecKull 2amma-
Kapomasic, MauuHHoe obydenue.



