Compositional Variation of Chrome Spinels in the Ore-bearing Zones of the Kraka Ophiolite and the Chromitite Origin

D. E. Saveliev, I. A. Blinov


The article considers a chemical variation of accessory and ore-forming chrome spinels from the Kraka ultramafic massif at the different scales, from the deposit to the thin section. A correlation analysis of compositional and structural features of ultramafic rocks and ores was performed. The ultramafic rocks and chromitites in the studied massif show the distinct deformation structures and tectonite olivine fabric. A typical chemical gap (i.e. Cr#=Cr/(Cr+Al)) was observed between peridotite, on the one hand, and dunite and chromitite, on the other hand, on the scale of deposits and ore-bearing zones. The location and size of this gap depend on the type of deposit. The gap becomes wider from the disseminated tabular bodies to the typical podiform ones. It has been found that in the thin initial dunite veinlets in peridotite the chrome spinels chemistry changes gradually and there is no Cr# gap between peridotite and dunite. The dunite venlets show a strong olivine fabric, which is an evidence of their high-temperature plastic flow origin. It has been revealed that new chrome spinel grains previously formed as rods or needles and then coarsened. We explained this observation as the result of impurity segregation, coalescence and spheroidization induced by the plastic deformation of olivine. It is inferred that a solid crystal flow is the main requirement for the dunite and chromitite body formation in the Kraka ophiolite massif. In the solid stream, the mineral phase separation takes place. For example, olivine and orthopyroxene grains of parental peridotite separate from one another, and weaker (more mobile) olivine grains form dunite bodies in which chromitite appears as a result of impurity segregation.

Ключевые слова

хромшпинелиды; офиолиты; ультрамафиты; пластическое течение; подиформные хромититы

Полный текст:



Ahmed Z. 1984. Stratigraphic and textural variations in the chromite composition of the ophiolitic Sakhakot-Qila Complex, Pakistan. Economic Geology and Bull. Soc. Econ. Geologists. 79:1334-1359.

Arai S., Miura M. 2015. Podiform chromitites do form beneath mid-ocean ridges. Lithos. 232:143–149. doi:10.1016/j.lithos.2015.06.015

Ballhaus C. 1998. Origin of the podiform chromite deposits by magma mingling. Earth and Planetary Science Letters. 156:185-193. doi:10.1016/S0012-821X(98)00005-3

Barnes S., Roeder P. 2001. The Range of spinel compositions in terrestrial mafic and ultra-mafic rocks. Journal of Petrology. 42:2279-2302. doi:10.1093/petrology/42.12.2279

Carter N.L. 1976. Steady state flow of rocks. Rev. Geophys. and Space Phys. 14:301-360. doi:10.1029/RG014i003p00301

Cassard D., Nicolas A., Rabinowitch M., Moutte J., Leblanc M., Prinzhoffer A. 1981. Structural Classification of Chromite Pods in Southern New Caledonia. Economic Geology.76:805-831.

Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. 2007. Kristallokhimiya khromshpineli i oksitermobarometriya ultramafitov skladchatykh oblastey [Crystal chemistry of chrome spinel and oxithermobarometry of ultramafites of fold belts]. IG&G UrO RAN. Yekaterinburg, p. 310. (in Russian)

Chernyshov A.I. 2001. Ultramafity (plasticheskoe techenie, strukturnaya i petrostrukturnaya neodnorodnost) [Ultramafites (plastic flow, structural and petrostructural heterogeneity)]. Charodey, Tomsk, p.215. (in Russian)

Chernyshov A.I., Yurichev A.N. 2013. Petro-strukturnaya evolyutsiya ultramafitov Kalninskogo khromitonosnogo massiva v Zapadnom Sayane [Petrostructural evolution of ultramafic rock of the Kalninskiy chromite-bearing massif in the West Sayan]. Geotektonika, 4:31-46 (in Russian)

Denisova E.A. 1990. Stroenie i deformatsionnye struktury ofiolitovykh massivov s lertsolitovym tipom razreza [Framework Structure and deformation features of ophiolite with lherzolite type of section]. Geotektonika. 2:14-27. (in Russian)

Dick H.J.B., Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol. 86:54-76. doi:10.1007/BF00373711

Dickey J.S. 1975. A hypothesis of origin for podiform chromite deposits. Geochim. et Cosmochim. Acta. 39:1061-1075. doi: 10.1016/0016-7037(75)90047-2

Fedoseev V.B. 2016. Stratification of two-phase monodisperse system in a laminar planar flow. Journal of Experimental and Theoretical Physics. 149(4):1-11.

Franz L., Wirth R. 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermalandtectonic evolution of the oceaniclithosphere. Contrib. Mineral. Petrol. 140:283-295. doi: 10.1007/s004100000188

Goncharenko A.I. 1989. Deformatsiya i petro-strukturnaya evolyutsiya alpinotipnykh giperbazitov [Deformation and petro structural evolution of alpinotype ultrabasites]. Tomsk University Publishing. Tomsk, p. 404. (in Russian)

Gonzalez-Jimenez J.M., Griffin W.L., Proenza A., Gervilla F., O'Reilly S.Y., Akbulut M., Pearson N.J., Arai S. 2014. Chromitites in ophiolites: how, where, when, why? Part II. The crystallisation of chromitites. Lithos. 189:148–158. doi:10.1016/j.lithos.2013.09.008

Gonzalez-Jimenez J.M., Proenza J.A., Gervilla F., Melgarejo J.C., Blanco-Moreno J.A., Ruiz-Sanchez R., Griffin W.L. 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constrains on their origin from mineralogy and geochemistry of chromian spinel and platinum-group-elements. Lithos. 125:101-121. doi: 10.1016/j.lithos.2011.01.016

Greenbaum D. 1977. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology. 72:1175-1194. doi: 10.2113/gsecongeo.72.7.1175

Hock M., Friedrich G., Plueger W.L., Wichowski A. 1986. Refractory- and metallurgical-type chromite ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita. 21:190-199. doi: 10.1007/BF00199799

Irvine T.N. 1965. Chromian spinel as a petrogenetic indicator. Part I: Theory. Canadian Journal Earth Science. 2:648-672. doi: 10.1139/e65-046

Kazantseva T.T., Kamaletdinov M.A. 1969. Ob allokhtonnom zaleganii giperbazitovykh massivov zapadnogo sklona Yuzhnogo Urala [About an allochtonous position of ultrabasic massifs of western slope of the Southern Urals]. Doklady AN USSR. 189:1077-1080. (in Russian)

Kelemen P.B., Dick H.J.B., Quick J.E. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature. 358:635-641. doi: 10.1038/358635a0

Kelemen P.В., Shimizu N., Salters V.J.M. 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature. 375:747-753. doi:10.1038/375747a0

Kohlstedt D.L., Goetze C., Durham W.B., Sande van der J.B. 1976. A new technique for decorating dislocations in olivine. Science.191:1045-1046. doi:10.1126/science.191.4231.1045

Kravchenko G.G. 1969. Rol tektoniki pri kristallizatsii khromitovykh rud Kempirsayskogo plutona [Role of tectonics in crystallization of chromite ore of the Kempirsayskiy Pluton]. Moskva, Nauka, p.232. (in Russian)

Kubo K. 2002. Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake Peridotite, Hokkaido, Japan. Journal of Petrology. 43:423-448. doi: 10.1093/petrology/43.3.423

Lago B.L., Rabinowicz M., Nicolas A. 1982. Podiform chromite ore bodies: a genetic model. Journal of Petrology. 23:103-125. doi: 10.1093/petrology/23.1.103

Leblanc M. 1980. Chromite Growth, Dissolution and Deformation from a Morphological View Point: SEM Investigations. Mineralium Deposita (Berl.). 15:201-210. doi: 10.1007/ BF00206514

Leblanc M., Violette, J.-F. 1983. Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites. Economic Geology.78:293-301. doi:10.2113/gsecongeo.78.2.293

Matsumoto I., Arai S. 2001. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun zone (SW Japan): implications for mantle/melt reaction and chromitite formation processes. Mineralogy and Petrology. 73:305-323. doi:10.1007/s007100170004

Matveev S., Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters. 203:235-243. doi: 10.1016/S0012-821X(02)00860-9

McElduff B., Stumpfl E.F. 1991. The chromite deposits of the Troodos complex, Cyprus - evidence for the role of a fluid phase accompanying chromite formation. Mineralium Deposita. 26:307-318. doi: 10.1007/BF00191079

Melcher F., Grum W., Simon G., Thalhammer T.V., Stumpfl E.F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology. 38:1419-1458.

Morishita T., Andal E.S., Arai S., Ishida Y. 2006. Podiform chromitites in the lherzolite-dominant mantle section of the Isabela ophiolite, the Philippines. Island Arc. 15:84-101. doi: 10.1111/j.1440-1738.2006.00511.x

Nicolas A., Bouchez J.L., Boudier F., Mercier J.C. 1971. Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics. 12:55-86. doi: 10.1016/0040-1951(71)90066-7

Novikov I.I. 1986. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. Moskow, Metallurgiya, p. 480. (in Russian)

Pavlov N.V., Kravchenko G.G., Grigoryeva-Chuprynina I.I. 1968. Khromity Kempirsayskogo plutona [Chromitites of the Kempirsay Pluton]. Moskow, Nauka, p. 178. (in Russian)

Perevozchikov B.V. 1995. Zakonomernosti lokalizatsii khromitovogo orudeneniya v alpinotipnykh giperbazitakh [Features of chrome ore lo-calization in the alpine-type ultrabasics]. Geoinformmark. Moskow. (in Russian)

Perevozchikov B.V., Bulykin L.D., Popov I.I. et al. 2000. Reestr khromitovykh mestorozhdeniy v alpinotipnykh giperbazitakh Urala [The no-menclature of chromite deosits in alpinotype ultrabasics of the Urals]. Perm, KamNIIKIGS, p. 474. (in Russian)

Poirier J.-P. 1985. Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. London, Cambridge University Press.

Poiski, razvedka i otsenka khromitovykh mestorozhdeniy [Prospecting, exploration and economic evaluation of chrome ore deposits]. Eds. Smirnova T.A., Segalovich V.I. 1987. Moscow. Nedra. (in Russian)

Prichard H.M., Barnes S.J., Godel B., Reddy S.M., Vukmanovic Z., Halfpenny A., Neary C.R., Fisher P.C. 2015. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction. Lithos. 218–219:87–98. doi:10.1016/j.lithos.2015.01.013

Proenza J., Gervilla F., Malgarejo J.C., Bodinier J.L. 1999. Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolite Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology. 94:547-566. doi:10.2113/gsecongeo.94.4.547

Roberts S. 1988. Ophiolitic chromite formation: a marginal basin phenomenon? Economic Geology. 83:1034-1036. doi: 10.2113/ gsecon-geo.83.5.1034

Saveliev D.E. 2012. Khromitonosnost giperbazitovykh massivov Yuzhnogo Urala [Chromite content of ultrabasic massifs of the Southern Urals. Diss. Dr. Geol.-Min. Sci., Perm State University. (in Russian)

Saveliev D.E. 2013a. Proiskhozhdenie nodulyarnykh tekstur (na primere khromitov vostochnoy chasti massiva Sredniy Kraka, Yuzhnyy Ural) [Origin of nodular texture (example of chromite from the eastern part of Sredniy Kraka massif, Southern Urals). Rudy i metally. 5:41-49 (in Russian)

Saveliev D.E. 2013b. Sootnoshenie struktur rudonosnoy dunit-khromitovoy assotsiatsii i peridotitov v ofiolitakh (na primere massivov Kraka) [Relationship between the structures of ore-bearing dunite-chromitite association and peridotites in the ophiolites (on the example of Kraka massifs). Litosfera. 2:76- 91 (in Russian)

Saveliev D.E., Blinov I.A. 2015. Sindeformatsionnye vydeleniya khromshpinelidov v plasticheski deformirovannykh agregatakh olivina (ofiolity Kraka, Yuzhnyy Ural) [Syndeformation chrome spinel inclutions in the plastically deformed olivine aggregates (Kraka ophiolite, the Southern Urals)]. Vestnik Permskogo Universiteta. Geologiya, 4(29):45-69. doi: 10.17072/psu.geol.29.44 (in Russian)

Saveliev D.E., Fedoseev V.B. 2011. Segregatsionnyy mekhanizm formirovaniya tel khromitov v ultrabazitakh skladchatykh poyasov [Segregation mechanism of chromitite body formation in the ultrabasic rocks of fold belts]. Rudy i metally. 5:35-42. (in Russian)

Saveliev D.E , Fedoseev V.B. 2014. Plasticheskoe techenie i reomorficheskaya differentstatsiya veshchestva v mantiynykh ultramafitakh [Plastic flow and rheomorphic differentiation of the mantle ultramaflc rocks]. Vestnik Permskogo universiteta. Geologiya. 4(25):22-41. doi:10.17072/psu.geol.25.22. (in Russian)

Saveliev D.E., Kozhevnikov D.A. 2015. Strukturnye i petrograficheskie osobennosti ultramafitov na uchastke mestorozhdeniya #33 v vostochnoy chasti massiva Sredniy Kraka (Yuzhnyy Ural) [Textural and Petrographic Features of Ultra-maflc Rocks within Area of "Deposit #33", Eastern Part of Sredniy Kraka Massif (South Urals)]. Vestnik Permskogo Universiteta. Ge-ologiya. l(26):60-84. doi:10.17072/psu.geol.26.60 (in Russian)

Saveliev D.E., Snachev V.I. 2012. Bednovkraplennye khromovye rudy Yuzhnogo Urala i perspektivy ikh prakticheskogo ispolzovaniya [Deposits of poor chromite ores of the South Urals and prospects of their use]. Rudy i metally. 2:36-40. (in Russian)

Saveliev D.E., Belogub E.V., Kotlyarov V.A. 2014. Mineralogo-geokhimicheskaya zonalnost i deformatsionnyy mekhanizm formirovaniya khromitit-dunitovykh tel v ofiolitakh (na primere massiva Kraka, Yuzhnyy Ural) [Mineral-geochemical zonation and deformation mechanism of formation of chromitite-dunite bodies in ophiolites (on the example of Kraka massif, South Urals)]. In Metallogeniya drevnikh i sovremennykh okeanov - 2014. IMin UrO RAN, Miass, pp. 95-98 (in Russian)

Saveliev D.E., Snachev V.I., Savelieva E.N., Bazhin E.A. 2008. Geologiya, petrogeokhimiya i khromitonosnost gabbro-giperbazitovykh massivov Yuzhnogo Urala [Geology, petro-geochemistry, and chromite content of gabbro - ultrabasic massifs of the South Urals]. Ufa, DizaynPoligrafServis. p. 320. (in Russian)

Savelieva G.N. 1987. Gabbro-ultrabazitovye kompleksy ofiolitov Urala i ikh analogi v sovremennoy okeanicheskoy kore [Gabbro-ultrabasic complexes of the Urals ophiolites and their analogues in the present-day oceanic crust]. Nauka. Moscow, p. 230. (in Russian)

Senchenko G.S. 1976. Skladchatye struktury Yuzhnogo Urala [The folding structures of the Southern Urals]. Nauka. Moscow, p. 172. (in Russian)

Shcherbakov S.A. 1990. Plasticheskie deformatsii ultrabazitov ofiolitovoy assotsiatsii Urala [Plastic deformations of ultrabasic rock of the Urals ophiolite association]. Moscow. Nauka, p. 120. (in Russian)

Snachev V.I., Saveliev D.E., Rykus M.V. 2001. Petrogeokhimicheskie osobennosti porod i rud gabbro-giperbazitovykh massivov Kraka [Petrogeochemical features of rocks and ores of gabbro-ultrabasic Kraka massifs]. BashGU. Ufa, p. 212. (in Russian)

Thayer T.P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Economic Geology. 59:1497-1524. doi:10.2113/gsecongeo.59.8.1497

Yamamoto J., Ando J., Kagi H., Inoue T., Yamada A., Yamazaki D., Irifune T. 2008. In situ strength measurements on natural upper-mantle minerals. Phys. Chem. Minerals. 35:249–257. doi:10.1007/s00269-008-0218-6

Zhou M.F., Malpas J., Robinson P.T., Sun M., Li J.-W. 2001. Crystallization of podiform chromitites from silicate magmas and the formation of nodular textures. Resource Geology. 51:1-6. doi:10.1111/j.1751-3928.2001.tb00076.x

Zhou M.F., Robinson P. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review. 36:678 – 686. doi:10.1080/00206819409465481



  • На текущий момент ссылки отсутствуют.

(c) 2017 D. E. Saveliev, I. A. Blinov

URL лицензии: