Закономерности изменения адсорбционных свойств глин, активированных давлением и ионами железа

M. A. Dzhuginisov, A. V. Andrianov, K. V. Sheina, S. G. Ashikhmin

Аннотация


Цель работы: рассмотреть закономерности адсорбции водяного пара глинистыми грунтами, которые были обработаны под разными давлениями и насыщены ионами железа, а также изучить процессы адсорбции и десорбции ионов Fe3+ бентонитовой и каолиновой глинами. Изучение изменений адсорбционных свойств глинистых грунтов необходимо для понимания процессов, происходящих в грунтах как в природных, так и в антропогенных условиях, особенно в случае загрязнения грунтов. В результате эксперимента было установлено, что адсорбционная способность глин по отношению к водяному пару возрастает при обработке их давлением. При обработке глин давлением и при последующем насыщении их ионами железа в бентонитовой глине адсорбционная активность снижается в диапазоне 0–150 МПа, при более высоких давлениях изменяется незакономерно. В каолине происходит рост адсорбции при давлениях до 200 МПа, но она уменьшается при давлениях от 200 до 800 МПа.

Полный текст:

PDF

Литература


Alvanyan K.A., Andrianov A.V., Selezneva Yu.N. 2020. Zakonomernosti izmeneniya granulometricheskogo sostava bentonitovoy gliny Zyryanskogo mestorozhdeniya aktivirovannoy davleniem [Regularities of Changes in the Granulometric Composition of the Bentonite Clay of the Zyryansk Deposit Activated by Pressure]. Vestnik Permskogo universiteta. Geologiya. 19(4):380-387. (in Russian) doi:10.17072/psu.geol.19.4.380

Boldyrev V.V. 2006. Mekhanomiya i mekhanicheskaya aktivatsiya tvyordykh veshchestv [Mechanomy and mechanical activation of solids]. Uspekhi Khimii. 75(3):203-216. (in Russian) doi:101.1070/RC2006v075n03ABEH001205.

Seredin, V.V., Parshina T.Y., Rastegaev A.V., Galkin V.I., Isaeva G.A. 2018. Changes of energy potential on clay particle surfaces at high pressures. Applied Clay Science. 155:8-14. doi:10.1016/clay.2017.12.042

Cui J., Zhang Z., Han F. 2020. Effects of pН on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science. V.190. 105543.

Deng L., Yuan P., Liu D., Zhou J., Chen F. Annabi-Bergaya F., Liu Z. 2017. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors. Applied Clay Science. 143:184–191.

Eyyubova E.J., Nagiyev Kh.J., Mammadov S.E., Matin A.A., Chiragov F.M. 2022. Adsorption of Fe (III) ions on modified adsorbent: adsorption isotherms. Azerbaijan Chemical Journal. 4:33-42.

Kara-Sal B.K., Sapelkina T.V. 2012. Increase of adsorption properties of clay rocks of Tuva depending on activation methods. Actual problems of modern science. 5:158-162. (in Russian)

Khankhasaeva S.Ts., Badmaeva S.V. 2022. Adsorption of methanyl yellow dye on Fe-modified bentonite clay. ChemChemTech. 65(5):23-29.

Komarov V.S. 1970. Adsorption-structural, physico-chemical and catalytic properties of clays of Belarus. Minsk Science and Technology, p. 320. (in Russian)

L. Deng, P. Yuan,D. Liu, J. Zhou, F. Chen, F. Annabi-Bergaya, Z. Liu. 2017. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite on their benzene adsorption behaviors. Applied Clay Science. 143:184–191.

M.D. Welch, W. Montgomery, E. Balan, P. Lerch. 2012. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum mechanical calculations. Physics and Chemistry of Minerals. 39:143 – 151.

MON F 14.1:2:4.50-96. Quantitative chemical analysis of water. Methods of measuring the mass concentration of total iron in drinking, surface and wastewater photometric method with sulfosalicylic acid. Moskva, 2011. https://www.russiangost.com/p162382-pnd-f-1412450-96.aspx (in Russian)

Mostalygina L.V., Chernova E.A., Bukhtoyarov O.I. 2012. Acid activation of bentonite clay. Bulletin of SUSU. 24:57-61. (in Russian)

Osipov V.I., Sokolov V.H., Rumyantseva N.A. 1989. Microstructure of clay rocks. Moskva, Nedra, p. 211. (in Russian)

La Iglesia A. 1993. Pressure induced disorder in kaolinite. Clay Minerals. 28:311-319. doi: 10.1180/claymin.1993.028.2.11.

Pushkareva G.I. 2000. Influence of temperature treatment of brucite on its sorption properties. Physical-technical problems of mineral development. 6:90-93. (in Russian)

Seredin V.V., Alvanyan K.A., Makovetsky O.A., Yadzinskaya M.R. 2022. Influence of the structure of bentonite clay activated by pressure on the adsorption index. Izvestiya Tomsk Polytechnic University. Georesource engineering. 333(11):81-89. (in Russian)

Seredin V.V., Krasilnikov P.A., Medvedeva N.A. 2017. Changes in the electrokinetic potential of clay colloids in aqueous and hydrocarbon media: scientific edition. Geoecology, engineering geology, hydrogeology, geocryology. 1:66-74. (in Russian)

Seredin V.V., Yadzinskaya M.R., Andrianov A.V. 2021. Classification of bound water forms in kaolinite clays. Bulletin of the Tomsk Polytechnic University. Georesource engineering. 332(6):73-81. (in Russian)

Shahwan T., Erten H.N., Unugur S. 2006. A characterization study of some aspects of the adsorption of aqueous CO2+ ions on a natural bentonite clay. Journal of Colloid and Interface Science. 300(2):447-452.

Sruthi P.L., Reddy P.H.P. 2019. Swelling and mineralogical characteristics of alkali-transformed kaolinitic clays. Applied Clay Science. 183:353-362. doi: 10.1016/j.clay.2019.105353.

Tarasevich Yu.I., Ovcharenko F.D. 1975. Adsorption on clay minerals. Kiev, Nauk. dumka, p. 351. (in Russian)

Galan E., Aparicio P., Gonzalez A. 2006. The effect of pressure on order/disorder in kaolinite under wet and dry conditions. Clays and clay Minerals. 54(2):230-239. doi: 10.1346/CCMN.2006.0540208.

Kostin A.V., Mostalygina L.V., Bukhtoyarov O.I. 2015. The mechanism of adsorption of zinc and cadmium ions onto bentonite clay. Protection of Metals and Physical Chemistry of Surfaces. 51(5):773-778. (in Russian)

Welch M.D., Montgomery W., Balan E., Lerch P. 2012. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum mechanical calculations. Physics and Chemistry of Minerals. 39:143–151.

Xie Y., Zeng Z., Zhang B., Zhang Y., Tang S. 2021. Analysis and modeling of bound water adsorption by mixed clay based on adsorption theory. Arabian Journal of Geosciences. 14, 1089. doi:10.1007/s12517-021-07430-7

Y. He, Y.Y. Li, T.J. Evans, A.B. Yu, R.Y. Yang. 2019. Effects of particle characteristics and consolidation pressure on the compaction of non-spherical particles minerals engineering. Minerals Engineering. 137:241–249.

Z.-J. Fang, X.-S. Zhai, Z.-L. Li, R.-J. Pan, M. Mo. 2017. Pressure dependence of the electronic structure in kaolinite: a first-principles study. Modern Physics Letters. 31(12):1750194 (10).

Zhi Jie Fang, Xiao-Shuai Zhai, Xiao-Shuai Zhai, Zheng-Lin Li, Rong-Jun Pan. 2017. Pressure dependence of the electronic structure in kaolinite: a first- principles study. Modern Physics Letters B. 31(12). doi: 10.1142/S0217984917501949

Zhi-Jie Fang, Kai-Yuan Gou, Man Mo, Ji-Shu Zeng, Hao He, Xiang Zhou, Hui Li. 2020. Firstprinciple study of electronic structure of montmorillonite at high pressure. Modern Physics Letters. 34(25). doi:10.1142/S0217984920502632




DOI: http://dx.doi.org/10.17072/psu.geol.22.4.333

Ссылки

  • На текущий момент ссылки отсутствуют.