Применение функции взаимной корреляции для картирования сдвигов по данным потенциальных полей (на примере трансформных разломов хребта Колбейнси)
Аннотация
Полный текст:
PDFЛитература
Abetov A.E., Volozh Yu.A., Niyazova A.T. 2019. Korrelyatsionnyy analiz osnovnykh granits osadochnogo chekhla Severo-Ustyurtskogo regiona [Correlation analysis of the main boundaries of the sedimentary cover of the North-Ustyurt region]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 330.12:179–188. (in Russian)
Adamovich A.N., Babichev A.A., Bornyakov S.A., Buddo V.Yu., Lobackaya R.M., Semniskiy K.Zh., Truskov V.A., Sherman S.I. 1991. Razlomoobrazovanie v litosfere. Zony sdviga [Faults formation in the lithosphere. Shear zones.]. Ed. Logachev N.A. Novosibirsk, Nauka, p. 262. (in Russian)
Afanasenkov A.P., Obuhov A.N., Chikishev A.A., Shajdakov V.A., Bordyug A.V., Kalamkarov S.L. 2018. Tektonika severnogo obramleniya sibirskoy platformy po rezul'tatam kompleksnogo analiza geologo-geofizicheskikh dannykh. [Tectonics of the northern framing of the Siberian platform based on the results of a comprehensive analysis of geological and geophysical data]. Geologiya nefti i gaza. 1:7–27. (in Russian)
Ageev A., Egorov A., Krikun N. 2020. The principal characterized features of earth’s crust within regional strike-slip zones. In: Advances in raw material industries for sustainable development goals, pp. 78-84. doi: 10.1201/9781003164395-11.
Asoskov A., Matykina D. 2023. Cross-correlation function in the interpretation of potential fields anomalies of strike-slip nature. E3S Web Conf., 460. 10025. doi: 10.1051/e3sconf/202346010025.
Asoskov A.E., Senchina N.P., Matykina D.A. 2024. Primenenie vzaimnokorrelyatsionnoy funktsii pri interpretatsii sdvigovykh dislokatsiy [Application of the cross-correlation function in the interpretation of shear dislocations]. Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley. 50-ya yubilejnaya sessiya Mezhdunarodnogo seminara im. D.G. Uspenskogo - V.N. Strakhova. Moskva, pp. 16–21. (in Russian)
Bednenko A.P. 2003. Anizotropnaya transformatsiya gravimetricheskogo polya pri trassirovanii razryvnykh dislokatsiy [Anisotropic transformation
of the gravimetric field when tracing discontinuous dislocations]. Zapiski Gornogo instituta. 2:7–9. (in Russian)
Brandsdóttir B., Hooft E.E.E., Mjelde R., Murai Y. 2015. Origin and evolution of the Kolbeinsey Ridge and Iceland Plateau, N-Atlantic. Geochem. Geophys. Geosyst. 16: 612–634. doi: 10.1002/2014GC005540
Dolgal A.S. 2022. Gravimetriya i magnitometriya: transformatsii geopotencial'nykh poley [Gravimetry and magnetometry: transformations of geopotential fields]. Perm, Izdatel'skiy tsentr PSU, p. 140. (in Russian)
Egorov A.S., Ageev A.S. 2023. Tektonicheskoe rayonirovanie i posledovatel'nost formirovaniya konsolidirovannnoy kory Severnoy Evrazii i prilegayushchego shelfa [Tectonic zoning and sequence of formation of the consolidated crust of Northern Eurasia and the adjacent shelf]. In: Materialy LIV Tektonicheskogo soveshchaniya Tektonika i geodinamika zemnoj kory i mantii: fundamental'nye problemy-2023, pp. 155–160. (in Russian)
Frolova N.S., Kara T.V., Chitalin A.F., Cherneckiy A.G. 2019. Analogovoe modelirovanie slozhnykh sdvigovykh zon. Primer Baimskoy rudnoy zony (Zapadnaya Chukotka) [Analog modeling of complex shear zones. An example of the Baim ore zone (Western Chukotka)]. In: Problemy tektoniki kontinentov i okeanov: Materialy LI-go Tektonicheskogo soveshchaniya, pp. 320-324. (in Russian)
Geoinformatsionnye tekhnologii dlya prirodopol'zovaniya GIS INTEGRO. http://www.gisintegro.ru/ (accessed 16.05.2024). (in Russian)
Greenhalgh E.E., Kusznir N.J. 2007. Evidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion, Geophys. Res. Lett. 34, L06305, doi: 10.1029/2007GL029440.
Ivanov K.S., Fedorov Yu. N., Kormil'cev V.V. 2005. Sistema sdvigov v fundamente ZapadnoSibirskogo megabasseyna [System of shifts in the basement of the West Siberian mega-basin]. Doklady Akademii nauk. 405(3):371–375. (in Russian)
Jiannan Meng, Timothy Kusky, Walter D. Mooney, Erdin Bozkurt, Mehmet Nuri Bodur, Lu Wang. 2024. Surface deformations of the 6 February 2023 earthquake sequence, eastern Turkiye. Science. 383:298–305. doi:10.1126/science.adj3770
Karamyshev A.V., Fyodorova K.S., Tarasov A.V. 2020. Prognoz skrytogo zolotogo orudeneniya v predelakh Tsentral'no-Kolymskogo rayona po kompleksu geologo-geofizicheskikh priznakov metodom raspoznavaniya [Forecast of hidden gold mineralization within the Central Kolyma region based on a complex of geological and geophysical features using the recognition method]. Rudy i metally. 2:10–24. doi:10.24411/0869-5997- 2020-10010 (in Russian)
Kerimov I.A., Gajsumov M.Ya., Abubakarova E.A. 2012. Gravitatsionnoe i magnitnoe polya i neftegazonosnost' Tersko-Kaspiyskogo progiba [Gravity and magnetic fields and oil and gas potential of the Terek-Caspian trough]. Vestnik rossiyskikh universitetov. Matematika. 4:1187–1192. (in Russian)
Kompleks spektralno-korrelyatsionnogo analiza dannykh KOSKAD 3D. URL: http://www.coscad3d.ru/(accessed 16.05.2024).
Kvamme K.L. 2018. Geophysical correlation: global versus local perspectives. Archaeological Prospection. 25(2):111–120.
Logachev N.A., Sherman S.I. 1981. Problemy razlomnoy tektoniki [Problems of fault tectonics]. Novosibirsk, Nauka, p. 171. (in Russian)
Phaml L.T., Oksum E., Kafadar O., et al. 2022. Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient. Vietnam Journal of Earth Sciences. 44(3):1-15. doi: 10.15625/2615-9783/17013
Mann P. 2007. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems. Geological Society, London, Special Publications. 290(1):13–142. doi:10.1144/SP290.2
Molnar P., Dayem K. 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere. 6(4):444–467. doi:10.1130/GES00519.1
Nassonova N.V., Romancheev M.A. 2011. Geodinamicheskiy kontrol neftegazonosnosti sdvigovymi dislokatsiyami na vostoke Zapadnoy Sibiri [Geodynamic control of oil and gas potential by shear dislocations in the east of Western Siberia]. Geologiya nefti i gaza. 4:8–14. (in Russian)
Rol sdvigovoy tektoniki v strukture litosfer Zemli i planet zemnoy gruppy [The role of shear tectonics in the structure of the lithospheres of the Earth and terrestrial planets]. Ed. P.S. Voronov. SanktPeterburg, Nauka, 1997, p. 582. (in Russian)
Shahtyrov V.G. 1997. Rudokontroliruyushchee znachenie «skolov Ridelya» pri formirovanii zolotorudnykh mestorozhdeniy. [The ore-controlling significance of “Riedel chips” during the formation of gold deposits] Novye dannye po geologii i metallogenii Severo-Vostoka Rossii, Magadan, pp. 188–203. (in Russian)
Smirnov O.A., Borodkin V.N., Lukashov A.V., Plavnik A.G., Trusov A.I. 2022. Regionalnaya model' riftogeneza i strukturno-tektonicheskogo rayonirovaniya severa Zapadnoy Sibiri i Yuzhno-Karskoy sineklizy po kompleksu geologo-geofizicheskikh issledovaniy [Regional model of rifting and structural-tectonic zoning of the north of Western Siberia and the South Kara syncline based on a complex of geological and geophysical studies] Neftegazovaya geologiya. Teoriya i praktika.17(1). doi: 10.17353/2070-5379/1_2022 (in Russian)
Tectonic Map of the World at 1/35M scale (TeMaW) URL: https://www.vsegei.ru/en/activity/intcooperation/tect_map35M (accessed 16.05.2024)
Timurziev A.I. 2013. Noveyshaya sdvigovaya tektonika osadochnykh basseynov: tektonofizicheskiy i flyuidodinamicheskiy aspekty (v svyazi s neftegazonosnost'yu) chast 1 [The latest strike-slip tectonics of sedimentary basins: tectonophysical and fluiddynamic aspects (in connection with oil and gas potential) part 1] Glubinnaya neft. 1(4):561–605. (in Russian)
World Magnetic Model 2020 (WMM) NCEI Geomagnetic Modeling Team and British Geological Survey. 2019. World Magnetic Model 2020. NOAA National Centers for Environmental Information. 2020, doi: 10.25921/11v3-da71, URL: https://www.ncei.noaa.gov/products/world-magnetic-model (accessed 16.05.2024)
DOI: http://dx.doi.org/10.17072/psu.geol.23.4.339
Ссылки
- На текущий момент ссылки отсутствуют.