Modern minerals formation at the site of brine discharge from the Lyudmilinskaya well (Solikamsk, Perm region)

I. I. Chaikovskiy, O. V. Korotchenkova, T. V. Fedorov

Abstract


The minerals formed from cold (4°C) sodium chloride solutions discharged between 1923 and 2019 from the Lyudmilinskaya brine-producing well were studied. During this time, the mineralization dropped from 260 to 9 g/dc3, and, at the wellhead area, an ecosystem presented by invertebrate animals, diatoms, iron and sulfur bacteria has been formed. Minerals, such as calcite and pyrite, and micron precipitates of native phases (sulfur, copper, silver, nickel, bronze), sulphides (series chalcocite- covelline, marcasite, argentopentlandite, acantite, millerite, chalcopyrite), sulfochlorides ((Ag,Cu,Ni)3(Cl,S)), chlorides (Ag3Cl), iron hydroxides, barite and sahamalit(Ce), were deposited both on the surface of pebbles and in clay-sand alluvial sediments. The studied brines are enriched with respect to sea water by siderophilic (Co, Ni), chalcophilic (Zn, Ge, As, Se, Sn, Sb, Bi, Pb, Tl (Cu?), and lithophilic elements (Be, Al, Ti, Cr, Mn, Y, Zr, Nb, W, Th). The increased concentration of these elements is explained by the hydrolysis and metal leaching the suprasalt clayey rocks with chlorides and sulfates. It is shown that the deposition of minerals occurs both chemically and biochemically.

Keywords


Verkhnekamskoye deposit; hypergenic brines; sulfur and iron bacteria; sulfate reduction; native minerals; sulfides and chlorides of chalcophilic metals

References


Butuzova G.Yu. 1998. Gidrotermalnoosadochnoye rudoobrazovaniye v riftovoy zone Krasnogo morya [Hydrothermal-sedimentary ore formation in the rift zone of the Red Sea]. Moskva, GEOS, p. 312. (in Russian)

Kalinina T.A., Chirkova Ye.P., Chaikovskiy I.I. 2016. Geokhimiya terrigenno-karbonatnykh i sulfatnykh porod solikamskoy svity Solikamskoy vpadiny (Preduralskiy krayevoy progib) [Geochemistry of terrigenous-carbonate and sulphate rocks of the Solikamskaya Suite (Solikamskaya Depression of Uralian foredeep)]. Vestnik Permskogo universiteta. Geologiya, 1(30):14-25. (in Russian) doi: 10.17072/psu.geol.30.14

Kurnakov N.S., Beloglazov K.B., Shmitko M.I. 1917. Mestorozhdeniye khloristogo kaliya Solikamskoy solenosnoy tolshchi [Potassium chloride deposit of the Solikamsk saliferous stratum]. Izvestiya AN, no. 8. (in Russian)

Lebedev L.M., Nikitina I.B. 1983. Chelekenskaya rudoobrazuyushchaya sistema [Cheleken oreforming system]. Moskva, Nauka, p. 240. (in Russian)

Chaikovskiy I.I. 2011. Sovremennoye biogennoye mineraloobrazovaniye v basseyne reki Shakvy [Modern biogenic mineral formation in the Shakva river basin]. Vestnik Permskogo nauchnogo tsentra, 1:4-8. (in Russian)

Chaikovskiy I.I., Kalinina T.A., Korotchenkova O.V. 2015. Tektonicheskiye i epigeneticheskiye protsessy v nadsolevoy tolshche Verkhnekamskogo mestorozhdeniya [Tectonic and epigenetic processes in the suprasalt layer of the Verkhnekamskoye deposit]. Litosfera, 5:71–80. (in Russian)

Chaikovskiy I.I., Korotchenkova O.V. 2016. Novye khlor- i alyuminiysoderzhashchiye mineraly Verkhnekamskogo mestorozhdeniya soley [New chlorine- and aluminum-bearing minerals from the Verkhnekamskoye salt deposit]. Vestnik Permskogo universiteta. Geologiya, 2(31):6-13. (in Russian) doi: 10.17072/psu.geol.31.6

Chaikovskiy I.I., Chirkova E.P., Trapeznikov D.E. 2017. Khromzhelezistye metakolloidnye obrazovaniya iz belykh karnallititov Verkhnekamskogo mestorozhdeniya [Chrom-iron metacolloid formations from white carnallites of the Verkhnekamskoe deposit]. Vestnik IG Komi Scientific Center, Ural Branch of RAS. 3:20-25. (in Russian)

Chaikovskiy I.I., Chaikovskaya E.V., Korotchenkova O.V., Chirkova E.P., Utkina T.A. 2019. Autigenic titanium and zirconium minerals at the Verkhnekamskoe salt deposit. Geochemistry International, 57(2):184–196.

Chaikovskiy I.I., Korotchenkova O.V., Chirkova E.P. 2019. Mineraly blagorodnykh metallov Verkhne-kamskogo mestorozhdeniya soley [Minerals of noble metals of the Verkhnekamskое salt deposit]. In: Problemy mineralogii, petrografii i metallogenii. Perm. State. Univ., Perm, pp. 29-36. (in Russian)

Fadeeva T., Chaikovskiy I., Chirkova E. 2019. The biota in the brine discharge area of Ludmilinskaya well (Solikamsk, Russia). In: Mine Water: Technological and Ecological Challenges, pp. 656-659.

Jowett E.C. 1986. Genesis of Kupferschiefer CuAg Deposits by Convective Flow of Rotliegende Brines during Triassic Rifting. Society of Economic Geologists. 81(8):1823-1837.

Leeder M.R. 1982. Sedimentology. Process and Product. Published by Allen and U., p. 344.

Large R.R., Bull S.W., McGoldrick P.J., Walters S., Derrick G.M. and Carr G.R. 2005. Stratiform and stratabound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia. Society of Economic Geologists, р. 931–963.

Roedder, E., 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 66:98– 120.

Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America. Reviews in Mineralogy. v. 12, p. 644.

Skinner B.J., White, D.E., Rose, H.J., Mays, R.E. 1967. Sulfides associated with the Salton Sea geothermal brine. Economic Geology. 62:316-330.

White D.E. 1974. Diverse Origin of Hydrothermal Ore Fluids. Economic Geology. 69:954-973.




DOI: http://dx.doi.org/10.17072/psu.geol.18.4.347

Refbacks

  • There are currently no refbacks.