Formation of the Energy Properties of the Surface of Clay Particles Modified by High Pressure
Abstract
Keywords
Full Text:
PDF (Русский)References
Galkin V.I., Rastegaev A.V., Galkin S.V. 2001. Veroyatnostno-statisticheskaya otsenka neftegazonostnosti lokalnykh struktur [Probabilistic-statistical assessment of the oil and gas content of local structures]. Uro RAN. Ekaterinburg, p.277. (in Russian)
Goylo Ye.A. 1997. Kristallokhimiya transformatsii sloistykh silikatov [Crystal chemistry of the transformation of layered silicates]. Diss. Cand. Sci. Sankt-Peterburgskiy gosudarstvennyy universitet.St. Petersburg, p.70. (in Russian)
Kara-Sal B.K., Sapelkina T.V. 2012. Povyshenie adsorbtsionnykh svoystv glinistykh porod Tuvy v zavisimosti ot metodov aktivatsii [Increasing the
adsorption properties of Tuva clay rocks depending on activation methods]. Aktualnye problemy sovremennoy nauki. 5:158-162. (in Russian)
Mironov V.L. 2004. Osnovy skaniruyushchey zondovoy mikroskopii [Basics of Scanning Probe Microscopy]. RAN Institut fiziki mikrostruktur. Nizhniy Novgorod, p. 114. (in Russian)
Osipov V.I. 2011. Nanoplenki adsorbirovannoy vody v glinakh, mekhanizm ikh obrazovaniya i svoystva [Nanofilms of adsorbed water in clays, the mechanism of their formation and properties]. Geoekologiya. p. 291-305. (in Russian)
Sapronova Zh.A., Lesovik V.S., Gomes M.Zh., Shaykhieva K.I. 2015. Sorbtsionnye svoystva UF-aktivirovannykh glin Angolskikh mestorozhdeniy [Sorption properties of UV-activated clays of Angola deposits]. Vestnik KazNITU. 18(1):91-93. (in Russian)
Seredin V.V., Lunegov I.V., Fyodorov M.V., Medvedeva N.A. 2019. Izmenenie sil adgezii montmorillonitovoy i kaolinovoy glin, obrabotannykh
stressovym davleniem [Changes in adhesion forces of montmorillonite and kaolin clays at stress pressures]. Inzhenernaya geologiya. XIV(2):44–59. doi:10.25296/1993-5056-2019-14-2-44-59. (in Russian)
Seredin V.V., Medvedeva N.A., Anyukhina A.V., Andrianov A.V. 2018. Vliyanie stressovogo davleniya na formirovanie svyazannoy vody v kaolinovoy gline [The effect of stress pressure on the formation
of bound water in kaolin clay]. Inzhenernaya geologiya. 13(6):36–46. doi: 10.25296/1993-5056-2018-13-6-36-46. (in Russian)
Seredin V.V., Rastegaev A.V., Medvedeva N.A., Parshina T.Yu. 2017. Vliyanie davleniya na ploshhad aktivnoy poverkhnosti chastits glinistykh
gruntov [Influence of pressure on the active surface area of clay soil particles]. Inzhenernaya geologiya. 3:18-27. doi: 10.25296/1993-5056-2017-3-18-27. (in Russian)
Seredin V.V., Fyodorov M.V., Lunegov I.V., Medvedeva N.A. 2018. Zakonomernosti izmeneniya sil adgezii na poverkhnosti chastits kaolinitovoy gliny, podverzhennoy szhatiyu [Regularities of adhesion forces changes on the surface of kaolinite clay particles subjected to compression]. Inzhenernaya geologiya. 13(3):8-18. doi: 10.25296/1993-
-2018-13-3-8-18. (in Russian)
Shlykov V.G. 2000. Ispolzovanie strukturnykh kharakteristik glinistykh mineralov dlya otsenki fiziko-khimicheskikh svoystv dispersnykh gruntov [Usage of the structural characteristics of clay minerals for assessing the physicochemical properties of dispersed soils]. Geoekologiya. 1:43-52. (in Russian)
Ata A., Rabinovich Y.I., Singh R.K. 2002. Role of surface roughness in capillary adhesion. Journal of Adhesion Science and Technology. 16(4):337–346.
Çolak A., Wormeester H., Zandvliet H.Y.W., Poelsema B. 2012. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Applied Surface Science. 258:6938–
Fritzsche Y., Peuker U.A. 2015. Wetting and adhesive forces on rough surfaces – An experimental and theoretical study. Procedia Engineering. 102:45–53.
Galan E., Aparicio P., Gonzalez Â. La I. I. I. 2006. The effect of pressure on order/disorder in kaolinite under wet and dry conditions. Clays and
Clay Minerals. 54(2):230-239.
Guo Yu., Xiong (Bill) Yu. 2017. Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM). AIMS Materials Science.
(3):582-593.
Yones R., Pollock H.M., Cleaver Y.A.S., Hodges C.S. 2002. Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir. 18(21):8045-8055. doi: 10.1021/la0259196.
Klaassen A., Liu F., Van den Ende D., Mugele F., Siretanu I. 2017. Impact of surface defects on the surface charge of gibbsite nanoparticles. Nanoscale. Apr 6. 9(14):4721-4729.
Kumar N., Zhao C., Klaassen A., Van den Ende D., Mugele F., Siretanu I. 2016. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy. Geochimica et Cosmochimica Acta. 175:100–112.
La Iglesia A. 1993. Pressure induced disorder in kaolinite. Clay Minerals. 28:311-319.
Leite F.L., Ziemath E.C., Oliveira Yr. O.N., Herrmann P.S.P. 2005. Adhesion forces for mica and silicon oxide surfaces studied by atomic force spectroscopy (AFS). Microscopy and Microanalysis. 11(SUPPL. 3):130-133.
Peng Zh. 2015. Effects of Surface Roughness and Film Thickness on the Adhesion of a Bioinspired Nanofilm. In: Bio-inspired Studies on Adhesion of a Thin Film on a Rigid Substrate, pp. 55-70.
Seredin V.V., Rastegaev A.V., Galkin V.I., Isaeva G.A., Parshina T. Yu. 2018. Changes of energy potential on clay particle surfaces at high pressures. Applied Clay Science. 155:8-14.
Zhu X., Zhu Z., Lei X., Yan C. 2016. Defects in structure as the sources of the surface charges of kaolinite. Applied Clay Science. 124-125:127-136.
Zhou Z., Gunter W. D. 1992. The nature of the surface charge of kaolinite. Clay and Clay Minerals. 40:365-368.
DOI: http://dx.doi.org/10.17072/psu.geol.20.1.33
Refbacks
- There are currently no refbacks.