Geomorphology of the Ninety East Ridge

P. A. Lemenkova

Abstract


This paper explores the geomorphological features of the Ninety East Ridge (NER), Indian Ocean. NER presents especially long and linear topographic structure formed as a result of complex regional geophysical and geologic development. The research is based on high precision bathymetric, geological and gravity data. The submarine geomorphology of NER was digitized as three cross-sectional profiles. The profiles were selected in northern, central and southern segments. The depths were visualized in graphs, compared and statistically analyzed by histograms. The study contributes to the geophysical studies of the Indian Ocean.


Keywords


Ninety East Ridge; Indian Ocean; GMT; cartography; geophysics; topography.

References


Bezrukov P.L., Kanaev V.F. 1963. Osnovnye cherty stroeniya dna severo-vostochnoy chasti Indiyskogo Okeana [The main features of structure

of the bottom of the northeastern part of the Indian Ocean]. Dokl. AN USSR. 153(4):926–929. (in Russian)

Belousov V.V. 1968. Zemnaya kora i verkhnyaya mantiya okeanov [The Earth's crust and the upper mantle of the oceans]. Moskva, Nauka, p. 255. (in Russian)

Belousov V.V. 1989. Osnovy geotektoniki [Fundamentals of geotectonics]. Moskva, Nedra, p. 379. (in Russian)

Udintsev G.B. 1965. Novye dannye o stroenii dna Indiyskogo okeana [New data on the structure of the bottom of the Indian Ocean]. Gkeanologiya. 5(6):993–998. (in Russian)

Udintsev G.B. 1986. Stroenie dna vostochnoy chasti Indiyskogo okeana i mesto v ney Zapadno-Avstraliyskogo khrebta [The structure of the bottom of the eastern part of the Indian Ocean and the place in it of the Western Australian ridge]. In: Geological and geophysical studies of aseismic uplifts of the ocean floor. Moskva, Nauka, pp. 104–122. (in

Russian)

Udintsev G.B. 1989. Regionalnaya geomorfologiya dna okeanov. Indiyskiy okean [Regional geomorphology of the ocean floor. Indian Ocean]. Moskva, Nauka, p. 112. (in Russian)

Udintsev G.B., Koreneva E.V. 1980. Proiskhozhdenie aseysmichnykh khrebtov vostochnoy chasti Indiyskogo okeana [The origin of aseismic ridges in the eastern part of the Indian Ocean]. Geotektonika. 6:13–22. (in Russian)

Altenbernd T., Jokat W., Geissler W. 2020. The bent prolongation of the 85°E Ridge south of 5°N – Fact or fiction? Tectonophysics. 785:228457. doi: 10.1016/j.tecto.2020.228457.

Anand S.P., Rajaram M., Majumdar T.J., Bhattacharyya R. 2009. Structure and tectonics of 85°E Ridge from analysis of Geopotential data. Tectonophysics. 478(1–2):100-110. doi: 10.1016/j.tecto.2008.09.036.

Andersen O., Knudsen P. 1998. Global marine gravity field from the ERS-1 and GEOSAT geodetic mission altimetry. J. Geophys. Res. 103:8129–8137. doi: 10.1029/97JC02198.

Balmino G., Moynot B., Sarrailh M., Valès N. 1987. Free air gravity anomalies over the oceans from Seasat and Geos 3 altimeter data. Eos Trans. AGU. 68(2):17–19. doi: 10.1029/EO068i002p00017.

Bastia R., Radhakrishna M., Das S., Kale A.S., Catuneanu O. 2010. Delineation of the 85°E ridge and its structure in the Mahanadi Offshore Basin, Eastern Continental Margin of India (ECMI), from seismic reflection imaging. In: Mar. Pet. Geol. 27(9):1841–1848. doi: 10.1016/j.marpetgeo.

08.003.

Bird P. 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4(3):1027. doi: 10.1029/ 2001GC000252 .

Bowin C. 1973. Origin of the Ninetyeast Ridge from studies near the equator. J. Geophys. Res. 78:6029–6043. doi: 0.1029/JB078i026p06029.

Cochran J.R., Sempéré J.C. 1997. The Southeast Indian Ridge between 88 E and 118 E: Gravity anomalies and crustal accretion at intermediate spreading rates. J. Geophys. Res. Solid Earth.102(B7):15463–15487. doi: 10.1029/97JB00511.

Duncan R.A. 1978. Geochronology of basalts from the Ninetyeast ridge and continental dispersion in the eastern Indian Ocean. J. Volcanol. Geotherm. Res. 4(3–4):283–305. doi: 10.1016/0377-0273(78)90018-5.

Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P. & Hillenbrand C. 2007. Swathbathymetric mapping. Reports on Polar and Marine

Research. 557:38–45. doi: 10.6084/m9.figshare.7439231

GEBCO Compilation Group. GEBCO 2020 Grid. 2020. doi: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9.

Hekinian R. 1974. Petrology of the Ninety East Ridge (Indian Ocean) compared to other aseismic ridges. Contrib. Mineral. Petrol. 43:125–147. doi: 10.1007/BF00572715.

Chang K.T. 1982. Multi-Component Quantitative Mapping. Cartogr J. 19(2):95–103. doi: 10.1179/caj.1982.19.2.95

Cauvin C. 1998. Des transformations cartographiques. Mappemonde. 49:12–15. Chorley R.J., Haggett P. 1967. Models in Geography. Methuen & Co. Ltd., p. 816.

Chrisman N.R. 2002. Exploring Geographic Information Systems. John Wiley and Sons, London, 2nd ed., p. 305.

Class C., Goldstein S., Galer S. 1996. Discussion of «Temporal evolution of the Kerguelen plume: geochemical evidence from 38 to 82 Ma lavas

forming the Ninetyeast Ridge» by F.A. Frey and D. Weis. Contrib. Mineral. Petrol. 124:98–103.

Coffin M.F., Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys. 32(1):1–36.

doi: 10.1029/93RG02508.

Fleet A.J., McKelvey B.C. 1978. Eocene Explosive Submarine Volcanism, Ninetyeast Ridge, Indian Ocean. Elsevier Oceanography Series. 21:73–

doi: 10.1016/0025-3227(78)90047-6.

Frey F.A., Silva I.G.N., Huang S., Pringle M.S., Meleney P.R. & Weis D. 2015. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth and Planet. Sci. Let. 426:293–304.

Frey F.A., Pringle M., Meleney P., Huang S., Piotrowski A. 2011. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth and Planet. Sci. Let. 303(3–4):215–224. doi: 10.1016/j.epsl.2010.12.051.

GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. URL: https://gdal.org/

Grevemeyer I., Flueh E.R., Reichert C., Bialas J., Klaschen D. & Kopp C. 2001. Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active-source ocean bottom seismology. Geophys. J. Int. 144:414–431. doi: 10.1046/j.0956-540X.2000.01334.x.

Gupta R.P., Sen A.K. 1988. Imprints of the Ninety-East Ridge in the Shillong Plateau, Indian Shield. Tectonophysics. 154(3–4):335–341. doi:

1016/0040-1951(88)90111-4.

Haxby W.F. 1987. Gravity field of the worlds oceans (Seasat altimetry). National Geophysical Data Center, NOAA, Boulder, Co. USA, (map).

Hédervari P. 1982. A possible submarine volcano near the central part of Ninety-East Ridge, Indian Ocean. J. Volcanol. Geotherm. Res. 13(3–

:199–211. doi: 10.1016/0377-0273(82)90050-6.

IHO-IOC GEBCO. International Hydrographic Organization Intergovernmental Oceanographic Commission General Bathymetric Chart of the Ocean Gazetteer of Undersea Feature Names. 2020.

URL: http://www.gebco.net/data_and_products/undersea_feature_names/

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosci. 5(1):28–42. doi:10.2478/s13533-012-0120-0.

Klaučo M., Gregorová B., Koleda P., Stankov U., Marković V. & Lemenkova P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environ. Eng. Manag. J. 2(16):449–458. doi: 10.30638/eemj.2017.045.

Knudsen P., Andersen O.B., Tscheming C.C. 1992. Altimetric gravity anomalies in the Norwegian-Greenland Sea: Preliminary results from

the ERS-135 days repeat mission. Geophys. Res. Let. 19(17):1795–1798. doi: 10.1029/92GL01698.

Lemenkova P. 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of

Geography. Physical Geography Series. 18(1):41–60. doi: 10.2478/bgeo-2020-0004.

Lemenkova P. 2020b. GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geodesy Cartogr. 46(3):98–112. doi: 10.3846/gac.2020.11524.

Lemenkova P. 2020c. The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics and Environment. 46(3):205–222. doi: 10.7494/geol.2020.46.3.205.

Lemenkova P. 2020d. Fractal surfaces of synthetical DEM generated by GRASS GIS module r.surf.fractal from ETOPO1 raster grid. Journal of

Geodesy and Geoinformation. 7(1):86–102. doi: 10.9733/JGG.2020R0006.E

Lemenkova P. 2020e. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geod. List. 74(1): 19–

doi: 10.6084/m9.figshare.12249773.

Lemenkova P. 2019a. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Pol. Cartogr. Rev. 51(4):181–194. doi:

2478/pcr-2019-0015.

Lemenkova P. 2019b. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific

Ocean. Rep. Geod. Geoinf. 108(1):9–22. doi:10.2478/rgg-2019-0008.

Lemenkova P. 2019c. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geogr. Tech. 14(2):39–48. doi: 10.21163/GT_2019.142.04.

Lemenkova P. 2019d. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste Geographical

Series. 19(2):73–94. doi: 10.6084/m9.figshare.12005148.

Lemenkova P. 2019e. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters. 7(2):72–89. doi: 10.6084/m9.figshare.11544048.

Lemenkova P. 2019f. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy Cartogr.

(2):57–84. doi: 10.3846/ gac.2019.3785.

Lemenkova P. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering. 34(2):51–60. doi: 10.26650/ASE2019547010.

Lemenkova P. 2019h. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis.

GeoScience Engineering. 65(4):1–22. doi:10.35180/gse-2019-0020.

Lemenkova P. 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment.

:35–42. doi: 10.6084/ m9.figshare.7434167.

Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H., Olson T.R. 1998. The Development of the Joint NASA GSFC and the National Imagery

and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861.

Levchenko O.V., Marinova Y.G., Portnyagin M.V., Werner R., Lobkovsky L.I. 2019. New Data on the Geology of Osborn Plateau, Indian Ocean.

Dokl. Earth Sci. AN RAS. 489:1469–1473. doi:10.31857/S0869-6524896631-636.

Liu C.S., Curray J.R., McDonald J.M. 1983. New constraints on the tectonic evolution of eastern Indian Ocean. Earth and Planet. Sci. Let. 65:331–342. doi: 10.1016/0012-821X(83)90171-1.

McKenzie D.P., Bowin C. 1976. The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res. 81:1903–1915. doi:

1111/j.1365-246X.1985. tb05166.x

Mukhopadhyay M., Krishna M.B.R. 1995. Gravity anomalies and deep structure of the Ninetyeast Ridge north of the equator, eastern Indian

Ocean – a hot spot trace model. Mar. Geophys. Res. 17:201–216. doi: 10.1007/BF01203426

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008).

J. Geophys. Res. 117:B04406. doi:10.1029/2011JB008916.

Petroy D.E., Wiens D.A. 1989. Historical seismicity and implications for diffuse plate convergence in the northeast Indian Ocean. J. Geophys. Res. 94:12301–12319. doi: 10.1029/JB094iB09p12301.

Ratheesh Kumar R.T., Windley B.F. 2013. Spatial variations of effective elastic thickness over the Ninetyeast Ridge and implications for its structure and tectonic evolution. Tectonophysics. 608:847–856. doi:10.1016/ j.tecto.2013.07.034.

Ratheesh Kumar R.T., Windley B.F., Rajesh V.J., Santosh M. 2013. Elastic thickness structure of the Andaman subduction zone: Implications for

convergence of the Ninetyeast Ridge. J. Asian Earth Sci. 78:291–300. doi: 10.1016/j.jseaes.2013.01.018.

Reverdatto V.V., Yeremeyev V.V., Il'yev A.Ya., Popov A.A., Sychev P.M., Sharapov V. N. 1985. Discovery of rhyolites and trachytes and the nature

of the Northern Ninety-East Ridge. Int. Geol. Rev. 27(5):552–555. doi: 10.1080/00206818509466442.

Royer J.Y., Peirce J.W., Weissel J.K. 1991. Tectonic constraints on the hot-spot formation of Ninetyeast Ridge. In: Proceedings of the Ocean

Drilling Program – Scientific Results. 121:763–775. doi: 10.2973/odp.proc.sr.121.122.1991.

Sager W.W., Bull J.M., Krishna K.S. 2013. Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate. J. Geophys. Res. 118:4648–4668. doi: 10.1002/jgrb.50319.

Sandwell D.T. 1992. Antarctic marine gravity field from high-density satellite altimetry. Geophys. J. Int. 109:437–448. doi: 10.1111/j.1365-246X.1992.tb00106.x

Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals

buried tectonic structure. Science. 346(6205):65–67. doi: 10.1126/science.1258213.

Schenke H.W., Lemenkova P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten. 81:16–21. doi: 10.6084/m9.figshare.7435538.

Sclater J.G., Fisher R.L. 1974. Evolution of the east central Indian ocean, with emphasis on the tectonic setting of the Ninetyeast Ridge. Geol. Soc.

Am. Bull. 85:683–702. doi: 10.1130/0016-7606(1974)85<683:EOTECI>2.0.CO;2.

Shang L., Hu G., Yuan Z., Qi J., Pan J. 2020. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new

observations. Marine Geology & Quaternary Geology. 40(4):1–16. doi: 10.16562/j.cnki.0256-1492.2020042201.

Silva I.G.N., Weis D., Scoates J.S. & Barling J. 2013. The Ninetyeast Ridge and its Relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the

Indian Ocean. J. Petrol. 54(6):1177–1210. doi: 10.1093/petrology/egt009.

Smith W.H.F. 1993. On the accuracy of digital bathymetric data. J. Geophys. Res. 98(B6):9591–9603. doi: 10.1029/ 93JB00716.

Smith W.H.F., Sandwell D.T. 1997. Global seafloor topography from Satellite altimetry and ship depth soundings. Science. 277:1956–1962. doi:10.1126/science.277.5334.1956.

Stein S., Okal E.O. 1978. Seismicity and tectonics of the Ninetyeast Ridge area: Evidence for internal deformation of the Indian plate. J. Geophys.

Res. 83:2233–2246. doi: 10.1029/JB083iB05p02233

Suetova I.A., Ushakova L.A., Lemenkova P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geogr. Nat. Resour. 4:138–142. doi: 10.6084/m9.figshare.7435535.

Tiwari V.M., Diament M., Singh S.C. 2003. Analysis of satellite gravity and bathymetry data over Ninety East Ridge: Variation in the compensation mechanism and implication for emplacement process. J. Geophys. Res.

(B2):2109. doi: 10.1029/2000JB000047.

Udintsev G.B. (ed.), 1975. Geologo-geofizicheskiy atlas Indiyskogo okeana [Geological-Geophysical Atlas of the Indian Ocean]. GUGK,

Moskva. (in Russian)

Udintsev G.B. 1989. Regionalnaya geomorfologiya dna okeanov. Indiyskiy okean [Regional Geomorphology of Ocean Floors: Indian Ocean]. Moskva, Nauka. (in Russian)

Udintsev G.B., Koreneva E.V. 1980. Origin of aseismic ridges in the eastern part of the Indian Ocean. Geotektonika. 6:13–22.

Verzhbitsky E.V. 2003. Geothermal regime and genesis of the Ninety-East and Chagos-Laccadive ridges. J Geodyn. 35(3):289–302.

Weis D., White W.M., Frey F.A., Duncan R.A., Fisk M.R., Dehn J., Ludden J., Saunders A., Storey, M. 1993. The Influence of Mantle Plumes in

Generation of Indian Oceanic Crust. Geophysical Monograph. Geophys. Monogr. Ser. 70:57–89. doi:10.1029/GM070p0057.

Wessel P., Smith W.H.F. 1991. Free software helps map and display data. Eos Trans. AGU. 72(41):441. doi: 10.1029/90EO00319.

Wessel P., Smith W.H.F. 1998. New version of the Generic Mapping Tools released. Eos Trans. AGU. 76(47):579–579. doi: 10.1029/98EO00426

Wessel P., Smith W.H.F. 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. J. Geophys. Res. 101:8741–8743. doi:

1029/96JB00104

Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F. 2013. Generic mapping tools: Improved version released. Eos Trans. AGU. 94(45):409–410. doi: 10.1002/ 2013EO450001.




DOI: http://dx.doi.org/10.17072/psu.geol.20.3.195

Refbacks

  • There are currently no refbacks.