Магматические и постмагматические минеральные ассоциации пород массива Малютка (худолазовский комплекс Южного Урала)

I. R. Rakhimov

Abstract


Проведены детальные минералогические исследования пород массива Малютка худолазовского дифференцированного комплекса. Выполнено описание морфологии и химического состава многих породообразующих и акцессорных минералов. По результатам исследований выделены магматический и постмагматический (гидротермально-метасоматический) этапы формирования пород. Обсуждаются проблемы, связанные с генетической интерпретацией ряда породообразующих и рудных минералов. Сделан вывод о полигенной природе формирования шпинелидов. Выполнена оценка температуры равновесия в системе «Ti-магнетит–ильменит» (633–650°C), а также температуры кристаллизации хлорита, замещающего флогопит и роговую обманку (145–185°C).

Keywords


минералогия; магматические ассоциации; метасоматоз; гидротермальный флюид

References


Rakhimov I.R. 2017. Geologiya, petrologiya i rudonosnost pozdnedevonsko-karbonovogo intruzivnogo magmatizma Zapadno-Magnitogorskoy zony Yuzhnogo Urala [Geology, petrology and oremineralization of Late Devonian–Carbon intrusive magmatism of the Western Magnitogorsk Zone of the Southern Urals]. Diss. cand. geol.-min. sci. Ufa, p. 181. (in Russian)

Rakhimov I.R., Saveliev D.E., Vishnevskiy A.V. 2019. Sulfidno-platinometallnaya mineralizatsiya izmenyonnykh gabbro massiva Malyutka khudolazovskogo kompleksa: vliyanie gidrotermalnykh protsessov na tip mineralnoy assotsiatsii [Sulfideplatinum metal mineralization of altered gabbro massif Malyutka of the Khudolazovskiy complex: hydrothermal influence to the mineral association types] Vestnik IG Komi NC UrO RAN. 275:15–24. (in Russian)

Salikhov D.N., Pshenichnyy G.N. 1984. Magmatizm i orudenenie zony ranney konsolidatsii Magnotogorskoy evgeosinklinali [Magmatism and mineralization of the Magnitogorsk eugeosyncline earlie consolidation zone]. Ufa, BB AN USSR, p. 112. (in Russian)

Andersen D.J., Lindsley D.H. 1985. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer Eos, Transactions, American Geophysical Union 66(18): 416.

Lanari P., Wagner T., Vidal O. 2014. A thermodynamic model for ditrioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contributions to Mineralogy and Petrology. 167, 968. doi:10.1007/s00410-014-0968-8

Lepage L.D. 2003. ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Computers & Geosciences. 29(5): 673–678. doi: 10.1016/S0098-3004(03)00042-6

Liu W., Migdisov A., Williams-Jones A. 2012. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: results of UV–visible spectroscopic experiments. Geochim. Cosmochim. Acta. 94: 276–290. doi: 10.1016/j.gca.2012.04.055

Valsami-Jones E., Ragnarsdottir K.V., Putnis A., Bosbach D., Kemp A.J., Cressey G. 1998. The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chemical Geology. 151: 215–233. doi:10.1016/S0009-2541(98)00081-3

Wood S.A., Mountain B.W. 1989. Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions: reassessment of hydroxide, bisulfide, and ammonia complexing. Economic geology. 84(7): 2020–2028. doi:10.2113/gsecongeo.84.7.2020


Refbacks

  • There are currently no refbacks.