Application of Potential Theory in the Numerical Solution of the Inverse Problem of Gravimetry
Abstract
This article discusses the results of a study in solving the inverse problem of gravimetry. It is shown that the solution of the inverse problem should be conducted in two stages. At the first step, the contour of the area occupied by gravitation masses is determined using the Laplace equation. At the second step, a generalization of the Poisson equation is used to determine the density distribution of the masses that fill the area, whose contour is determined at the first step. In this case, when setting the problem of analytic continuation, the provisions of potential theory are applied. The results of numerical calculations are presented on a model example with the determination of unknown values of density and values of the gravitational field inside a region filled with gravitation masses.
Keywords
Full Text:
PDF (Русский)References
Strakhov V.N., Arsanukaev Z.Z. 2002. Teoriya diskretnogo gravitatsionnogo polya (dvukhmernyy variant) i eyo ispolzovanie pri reshenii zadach gravimetrii [Theory of a discrete gravitational field (two-dimensional version) and its use in solving problems of gravimetry]. In: Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley. Proc. of the International Seminar after D.G. Uspenskiy. Yekaterinburg, Part II, pp. 73–77. (in Russian)
Arsanukaev Z.Z. 2013. Vydelenie i okonturivanie gravitiruyushchikh obyektov sovremennym metodom pereschyota gravitatsionnogo polya v nizhnee poluprostranstvo [Selection and contouring of gravitating objects by a modern method of recalculating the gravitational field into the lower half-space]. Vestnik KRAUNTs. Nauki o Zemle. 21:231–241. (in Russian)
Arsanukaev Z.Z. 2015. Primenenie tekhnologii vydeleniya perspektivnykh razrezov posredstvom paketa program GrAnM dlya kupolovidnykh struktur [Application of technology for highlighting the promising sections using the GranM software package for dome-shaped structures]. In: Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley. Proc. of the International Seminar after D.G. Uspenskiy. Perm, Part II, pp. 73–77. (in Russian)
Arsanukaev Z.Z. 2016. Ob osobennostyakh ispolzovaniya tekhnologii okonturivaniya posredstvom paketa program GrAnM dlya naklonnykh plastov [On the peculiarities of using contouring technology by the GrAnM software package for inclined seams]. In: Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley. Proc. of the International Seminar after D.G. Uspenskiy. Voronezh, pp. 21–23. (in Russian)
Arsanukaev Z.Z. 2017. Issledovanie zakonomernostey v povedenii raschyotnogo gravitatsionnogo polya, poluchennogo v rezultate analiticheskogo prodolzheniya, dlya antiklinalnykh i sinklinalnykh skladok [Investigation of regularities in the behavior of the calculated gravitational field obtained in result of analytical continuation for anticlinal and synclinal folds]. In: Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley. Proc. of the International Seminar after D.G. Uspenskiy. Moskva, pp. 29–33. (in Russian)
Idelson N.I. 1932. Teoriya potentsiala i eyo prilozheniya k voprosam geofiziki [Potential theory and its applications to geophysics]. GTTI, Leningrad, Moskva, p. 384. (in Russian)
Sternberg. Potential theory (Sammlung Goschen, NN 901 and 974).
Mac-Millan 1930. The theory of the Potential N.-Y., Mc Grawhill
Arsanukaev Z.Z. 2004. Vychislenie prostranstvennykh elementov anomalnykh poley s ispolzovaniem metodov teorii diskretnykh gravitatsionnykh poley [Calculation of spatial elements of anomalous fields using methods of the theory of discrete gravitational fields]. Fizika Zemli. 11:47–69. (in Russian)
Arsanukaev Z.Z., Arsanukaev I. Z. 2015. Programma analiticheskogo prodolzheniya zadannykh na poverkhnosti Zemli znacheniy gravitatsionnogo polya v nizhnee poluprostranstvo s ispolzovaniem diskretnykh skhem i resheniya system lineynykh algebraicheskikh uravneniy bolshikh poryadkov na modelnykh primerakh [The program for the analytical continuation of the values of the gravitational field given on the surface of the Earth into the lower half-space using discrete schemes and solving systems of linear algebraic equations of large orders on model examples]. Certificate of state registration of computer programs (SOFT). #2015661026, October 15, 2015. (in Russian)
DOI: http://dx.doi.org/10.17072/psu.geol.21.3.237
Refbacks
- There are currently no refbacks.