Использование геоинформационных систем для решения прогнозных инженерно-геологических задач при разработке месторождений полезных ископаемых

P. A. Krasilnikov

Аннотация


Одной из приоритетных задач инженерной геологии при разработке месторождений полезных ископаемых подземным способом является изучение динамики изменения инженерно-геологических условий в результате влияния техногенного фактора и степени его воздействия на существующие здания и сооружения. Наиболее значимое антропогенное влияние связано с извлечением полезного ископаемого и вмещающей породы. В результате выработки подземного пространства происходят деформации земной поверхности, которые сводятся к оседанию, изменению кривизны, уклона, сжатию и растяжению горных пород, что в свою очередь приводит к изменению гидрологического и гидрогеологического режима, активизации экзогенных процессов и т.д. Приводятся результаты создания ГИС-системы для решения прогнозных задач изменения инженерной геологических условий в результате техногенного воздействия. Использование ГИС-технологий позволяет обеспечить специалистов достоверной и оперативной информацией для оценки инженерно-геологических рисков на территории горных отводов и принимать обоснованные управленческие решения. Результатом прогнозного моделирования должен стать набор карт (картографических слоев) в пределах зоны влияния горных работ, содержащих следующую информацию: прогноз степени техногенного воздействия, прогноз изменения инженерно-геологических, гидрогеологических, геоэкологических условий, выявление объектов на земной поверхности, находящихся в зоне риска. На основании этих прогнозных расчетов необходимо разрабатывать мероприятия для снижения негативного воздействия. Такие информационные модели территории необходимы на всех этапах жизненного цикла месторождения, что позволит в любой момент времени получить качественную информацию об инженерно-геологических условиях осваиваемой территории.

Ключевые слова


ГИС; инженерно-геологические условия; картографическое моделирование; месторождение; прогнозное моделирование

Полный текст:

PDF

Литература


Khronusov V.V., Barskiy M.G., Krasilnikov P.A. 2018. Engineering geology software data-base for urban areas. International Multidisciplinary Scientific GeoConference SurveyingGeologyandMining Ecology Management. 2018. SGEM18(2.2), p. 163– 170

Konoplev A. V. , et.al. 2012. Razrabotka printsipov i sozdanie edinoy geoinformatsionnoy sistemy geologicheskoy sredy g. Permi (inzhenernaya geologiya i geoekologiya) [Development of principles and the creation of a unified geographic information system of the geological environment of the city of Perm (engineering geology and geoecology)]. Sovremennye problemy nauki i obrazovaniya. 6: 632. (in Russian)

Konoplev A.V., Kopylov I.S., Krasilnikov P.A., Kustov I.V. 2014. Geoinformatsionnoe obespechenie sistemy inzhenerno-geologicheskoy i geoekologicheskoy bezopasnosti goroda Permi [Geoinformation support of the engineering-geological and geoecological safety system of the city of Perm]. PSU, Perm, p. 56– 78. (in Russian)

Kozlovskiy S.V. 2010. Teoriya i praktika sozdaniya geoinformatsionnoy sistemy v inzhenernoy geologii. [Theory and practice of creating a geo information system in engineering geology].Diss. Dr. geol.-min nauk. Moskva, 2010. (in Russian)

Liu S., Li W., Wang Q. 2018. Zoning method for environmental engineering geological patterns in underground coal mining areas. Science of the Total Environment. 634:1064–1076.

Lomtadze V.D. 1990. Inzhenernaya geologiya mestorozhdeniy poleznykh iskopaemykh [Engineering geology of mineral deposits]. Nedra, Moskva. (in Russian)

Mironov O.K., Viktorov A.A., Fesel K.I. 2011. O problemakh vedeniya baz dannykh fondovoy informatsii [On the problems of maintaining databases of stock information]. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 5:455– 464. (in Russian)

Osipov V.I., Mironov O.K., Belyaev V.L. 2016. Postoyanno deystvuyushchaya GIS geologicheskoy sredy kak instrument dlya obosnovaniya gradostroitelnogo proektirovaniya obektov infrastruktury (na primere g. Moskvy) [Permanent GIS of the geological environment as a tool to justify urban planning of infrastructure objects (on example of Moscow)]. Vestnik MGSU. 2:159–172. (in Russian)

Ou W., Zhao B., Dai Y. 2016. Information quantity model applied in hazard evaluation of landslidesA case study of fuling, Chongqing. In: 6th International Workshop on Computer Science and Engineering, WCSE, pp. 777–781.

Pyankov S.V., Osovetskiy B.M., Konoplev A.V., Iblaminov R.G. 2014. Sistematizatsiya materialov inzhenerno-geologicheskikh izyskaniy na osnove GIS [Systematization of materials for engineering and geological surveys based on GIS technology]. Fundamentalnye issledovaniya. 11-2:353–356. (in Russian)

Professionalnoe programmnoe obespechenie v oblasti neogeografii i GIS [Professional software in the field of neogeography and GIS.] URL: http://www.informpp.com/programmnoeobespecenie (Accessed 26.08.2019).

Vaziri V., Khademi Hamidi J., Sayadi, A.R. 2018. An integrated GIS-based approach for geohazards risk assessment in coal mines. Environmental Earth Sciences. 77(1):29.




DOI: http://dx.doi.org/10.17072/psu.geol.19.1.65

Ссылки

  • На текущий момент ссылки отсутствуют.