Синдеформационные выделения хромшпинелидов в пластически деформированных агрегатах оливина (офиолиты Крака, Южный Урал)

D. E. Saveliev, I. A. Blinov

Аннотация


Приведены результаты структурно-петрографического и минералого-геохимического изучения дунитовых прожилков в шпинелевых перидотитах офиолитового массива Крака. Показано, что пластическая деформация поликристаллического оливина, слагающего дунит, сопровождалась выделением примесных компонентов – алюминия и хрома – в виде новообразованных  хромшпинелидов. Самые тонкие игольчатые выделения толщиной 0,3-0,5 микрона располагаются внутри зерен оливина вдоль направления [010]. Более крупные удлиненные ксеноморфные выделения хромшпинелидов – преимущественно вдоль границ зерен и субзерен оливина, реже – внутри зерен вдоль направления [100]. Отмечаются переходы от мелких ксеноморфных выделений до идиоморфных кристаллов шпинелидов. По аналогии с процессами динамического старения в металлических системах наблюдаемые структурно-вещественные преобразования в дунитах связываются с деформационно-индуцированной сегрегацией примесей. Предполагается, что типичные для офиолитовых дунитов идиоморфные кристаллы хромшпинелидов образуются путем коалесценции и сфероидизации и что данный процесс может иметь важное значение при образовании рудных скоплений хромита в офиолитах.

Ключевые слова


ультрамафиты; хромититы; пластическая деформация; петроструктура оливина; сегрегация; коалесценция; реоморфизм; Южный Урал; Крака

Полный текст:

PDF

Литература


Bershov S.V., Mineeva R.M., Speranskiy A.V., Khafner S. 1981. Vkhozhdenie khroma i aluminiya v strukturu forsterita (po dannym EPR and DEYaR issledovaniy) [Inclusion of chrome and aluminum in forsterite structure (using data of EPR and ENDOR studies)]. Mineralogicheskiy zhurnal, 3:62-70. (in Russian)

Bunin K.P., Baranov A.A. 1970. Metallografiya [Metallography]. Мoskva, Metallurgiya, p. 312. (in Russian)

Goncharenko A.I. 1989. Deformatsiya i petrostrukturnaya evolyutsiya alpinotipnykh giperbazitov [Deformation and petro structural evolution of alpinotype ultrabasites]. Tomsk, Tomsk Univ. Publ., p. 404. (in Russian)

Gorelik S.S. 1978. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Мoskva, Metallurgiya, p. 568. (in Russian)

Dudnikova V.B., Urusov V.S. 2014. Modelirovanie protsessov protonirovaniya forsterite metodom mezhatomnykh potentsialov [Modeling of processes of protonation of the forsterite using nodal potential method]. Geokhimiya, 4:291-301. (in Russian)

Kutolin V.A. 1983. Perekristallizatsiya veshchestva verkhney mantii i ee metallogenicheskie sledstviya [Recrystallization of upper mantle material and its metallogenic consequences]. In Mantiynye ksenolity i problema ultraosnovnykh magm. Novosibirsk, Nauka, pp.17-22. (in Russian)

Nicolas A. 1987. Principles of rock deformation. Dordrecht, Holland, D. Reidel Pub. Co., p. 208. doi: 10.1007/978-94-009-3743-7

Novikov I.I. 1986. Teoriya termicheskoy obrabotki metallov [Theory of thermal processing of metals]. Moskva, Metallurgiya, p. 480. (in Russian)

Perchuk L.L. 1977. Usovershenstvovanie dvupiroksenovogo termometra dlya glubinnykh peridotitov [Improvement of two-pyroxenite thermometer for deep peridotites]. DAN SSSR. 233(3):456-459. (in Russian)

Poirier J.P. 1985. Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press, p. 260.

Rodygin A.I. 1996. K metodike opredeleniya sistem skolzheniya v deformirovannykh olivinakh [About methodology of determination of slip systems in deformed olivine]. In Dinamometamorfizm i petrostrukturnaya evolutsiya porod mafit-ultramafitovoy assotsiatsii. Tomsk, pp. 12-18. (in Russian)

Saveliev D.E. 2014. K voprosu o proiskhozhdenii poykilitovykh vklyucheniy olivina v khromshpinelidakh iz ofiolitovykh dunitov [About origin of the olivine poikilitic inclusions in chrome-spinel from ophiolitic dunite]. Geologicheskiy sbornik. 11:134-146. (in Russian)

Saveliev D.E. 2013. Proiskhozhdenie nodulyarnykh tekstur (na primere khromitov vostochnoy chasti massiva Sredniy Kraka, Yuzhnyy Ural) [Origin of nodular texture (example of chromite from the eastern part of Sredniy Kraka massive, Southern Urals)]. Rudy i metally, 5:41-49. (in Russian)

Saveliev D.E., Belogub E.V., Kotlyarov V.A. 2014. Mineralogo-geokhimicheskaya zonalnost i deformatsionnyy mekhanizm formirovaniya khromitit-dunitovykh tel v ofiolitakh (na primere massiva Kraka, Southern Urals) [Mineralogo-geochemical and deformation mechanism of formation of chromitite-dunite bodies in ophiolites (example of Kraka massive, Southern Urals)]. In Metallogeniya drevnikh i sovremennykh okeanov – 2014. Miass, IMin UrO RAN, pp. 95-98. (in Russian)

Saveliev D.E., Kozhevnikov D.A. 2015. Strukturnye i petrograficheskie osobennosti ultramafitov na uchastke “mestorozhdenie #33” v vostochnoy chasti massiva Sredniy Kraka (Yuzhnyy Ural) [Textural and Petrographic Features of Ultramafic Rocks within Area of “Deposit #33”, Eastern Part of Sredniy Kraka Massif (South Urals)]. Vestnik Permskogo Universiteta. Geologiya, 1(26):60-84. (in Russian) doi: 10.17072/psu.geol.26.60

Saveliev D.E., Snachev V.I., Savelieva E.N., Bazhin E.A. 2008. Geologiya, petrogeokhimiya i khromitonosnost gabbro-giperbazitovykh massivov Yuzhnogo Urala [Geology, petrogeochemistry, and chromite content of gabbro-hyperbasic massifs of the South Urals]. Ufa, DizaynPoligrafServis, p. 320. (in Russian)

Saveliev D.E., Fedoseev V.B. 2014. Plasticheskoe techenie i reomorficheskaya differentsiatsiya veshchestva v mantiynykh ultramafitakh [Plastic flow and rheomorphic differentiation of the mantle ultramafic rocks]. Vestnik Permskogo universiteta. Geologiya, 4(25):22-41. (in Russian) doi: 10.17072/psu.geol.25.22

Saveliev D.E., Fedoseev V.B. 2011. Segregatsionnyy mekhanizm formirovaniya tel khromititov v ultrabazitakh skladchatykh poyasov [Segregation mechanism of chromitite body formation in the ultrabasic rocks of fold belts]. Rudy i metally, 5: 35-42. (in Russian)

Saranchina G.M., Kozhevnikov V.N. 1985. Fedorovskiy metod (opredelenie mineralov, mikrostrukturnyy analiz) [Fedorovskiy method (minerals definition, microstructural analysis)]. Leningrad, Nedra, p. 208. (in Russian)

Honeycombe R.W.K. 1984. The plastic deformation of metals. Edward Arnold Ltd. P. 483.

Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. 2007. Kristallokhimiya khromshpineli i oksitermobarometriya ultramafitov skladchatykh oblastey [Crystal chemistry of chrome-spinel and oxithermobarometry of ultramafites of fold belts]. Yekaterinburg, IG&G UrO RAN, p. 310. (in Russian)

Chernyshov A.I. 2001. Ultramafity (plasticheskoe techenie, strukturnaya i petrostrukturnaya neodnorodnost) [Ultramafites (plastic flow, structural and petrostructural heterogeneity)]. Tomsk, Charodey, p. 215. (in Russian)

Shcherbakov S.A. 1990. Plasticheskie deformatsii ultrabazitov ofiolitovoy assotsiatsii Urala [Plastic deformation of ultrabasic rocks of the Urals ophiolite association]. Moskva, Nauka, p. 120. (in Russian)

Yarosh P.Ya. 1980. O pervoistochnike khroma v dunitakh i prirode aktsessornogo khromita [About primary source of chromite in dunite and nature of accessory chromite]. Zapiski VMO, 109(1):98-105. (in Russian)

Achenbach K.L., Cheadle M.J., Faul U., Kelemen P., Swapp S. 2011. Lattice-preferred orientation and microstructure of peridotites from ODP Hole 1274A (15°39′N), Mid-Atlantic Ridge: Testing models of mantle upwelling and tectonic exhumation. Earth. Planet. Sci. Lett., 301(1-2):199-212. doi: 10.1016/j.epsl.2010.10.041

Arai S. 1978. Chromian spinel lamellae in olivine from the Iwanai-Dake peridotite mass, Hokkaido, Japan. Earth. Planet Sci. Lett., 39:267-273.

Ballhaus C., Berry R., Green D. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implication for the oxidation state of the upper mantle. Contrib. Miner. Petrol., 107:27 – 40. doi: 10.1007/BF00311183

Bell P.M., Mao H.K., Roedder E.,Weiblen P.W. 1975. The problem of the origin of symplectites in olivine-bearing lunar rocks. Proc. Sixth Lunar. Sci. Conf., 1: 231-248.

Bershov L.V., Gaite J.-M., Hafner S.S., Rager H. 1983. Electron Paramagnetic Resonance and ENDOR Studies of Cr 3 + - Al 3 + Pairs in Forsterite. Phys. Chem. Minerals, 9:95-101. doi: 10.1007/BF00308364

Boland J.N. 1974. Lamellar structures in low-calcium orthopyroxenes. Contrib. Miner. Petrol., 47:215-222.

Carter N.L. 1976. Steady state flow of rocks. Rev. Geophys. and Space Phys. 14(3):301-360. doi: 10.1029/RG014i003p00301

Champness P.E. 1970. Nucleation and growth of iron oxides in olivines. Mineralogical Magazine, 37:790-800. doi: 10.1180/minmag.1970.037.291.05

Coe R.S., Kirby S.H. 1975. The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib. Miner. Petrol., 52:20-55.

Dodd R.T. 1973. Minor element abundances in olivines of the Sharps (H3) chondrite. Contrib. Mineral. Petrol., 42:156-167.

Fabries J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib. Miner. Petrol., 69:329 – 336. doi: 10.1007/BF00372258

Franz L., Wirth R. 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contrib. Mineral. Petrol., 140(3):283-295. doi: 10.1007/s004100000188

Ghosh D.B., Karki B.B. 2014. First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys. Chem. Minerals, 41(3):163–171. doi: 10.1007/s00269-013-0633-1

Green H.W., Gueguen Y. 1983. Deformation of peridotite in the mantle and extraction by kimberlite; a case history documented by fluid and solid precipitates in olivine. Tectonophysics, 92(1-3):71-92. doi:10.1016/0040-1951(83)90085-9

Hiraga T., Anderson I.M., Kohlstedt D.L. 2003. Chemistry of grain boundaries in mantle rocks. Am. Mineral., 88(7):1015–1019.

Hiraga T., Anderson I.M., Kohlstedt D.L. 2004. Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature, 427:699–703 (19 February 2004). doi: 10.1038/nature02259

Hwang S.L., Yui T-F., Chu H-T., Shen P., Iizuka Y., Yang H-Y., Yang J., Xu Z. 2008. Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine? Am. Mineralogist, 93:1051-1060.

Kohler T. 1989. Der Ca-Gehalt von Olivin in Gleichgewicht mit Clinopyroxen als Geothermometer. PhD Thesis, Univ. of Mainz.

Kohlstedt D.L., Vander Sande J.B. 1975. An electron microscopy study of naturally occurring oxidation produced precipitates in iron-bearing olivines. Contrib. Mineral. Petrol. 53(1):13-24. doi: 10.1007/BF00402451

Mackwell S.J., Kohlstedt D.L. 1990. Diffusion of hydrogen in olivine: implications for water in the mantle. Journal of Geophysical Research, 95(B4):5079-5088. doi: 10.1029/JB095iB04p05079

Moseley D. 1984. Symplectitic exsolution in olivine. Am. Mineral., 69(1-2):139-153.

O’Neill H.St.C., Wall V.J. 1987. The olivine-spinel oxygen geobarometer, the nickel precipitation curve and the oxygen fugacity of the upper mantle. J.Petrol., 28(6):1169 – 1192. doi: 10.1093/petrology/28.6.1169

Ono A. 1983. Fe-Mg partitioning between spinel and olivine. J. Japan. Assoc. Min. Petr. Econ. Geol., 78:115 – 122.

Puga E., Ruiz Cruz M.D., De Federico A.D. 1999. Magnetite-silicate inclusions in olivine of ophiolitic metagabbros from the Mulhacen complex, Betic Cordilliera, southeastern Spain. Can. Miner., 37(5):1191-1209.

Rager H. 1977. Electron spin resonance of trivalent chromium in forsterite Mg2SiO4. Phys. Chem. Minerals, 1(4):371-378. doi: 10.1007/BF00308846

Risold A.-C., Trommsdorff V., Grobety B. 2001. Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib. Mineral Petrol., 140(5): 619-628. doi: 10.1007/s004100000204

Roeder R.L., Campbell I.H., Jamieson H.E. 1979. A Re-Evaluation of the Olivine-Spinel Geothermometer. Contrib. Mineral. Petrol., 68(3):325-334. doi: 10.1007/BF00371554

Ryabov I. D. 2012. EPR study of chromium-doped forsterite crystals: Cr3+(M1) with associated trivalent ions Al3+ and Sc3+. Phys. Chem. Minerals, 39(9):725–732. doi: 10.1007/s00269-012-0526-8

Stevens M.R., Bell D.R., Buseck P.R. 2010. Tubular symplectic inclusions in olivine from the Fuckang pallasite. Meteor. Planet. Sciences, 45(5):899-910. doi: 10.1111/j.1945-5100.2010.01054.x

Wells P.R.A. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Miner. Petrol., 62(2):129-139. doi: 10.1007/BF00372872

Wood B.J., Banno S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contr. Mineral. Petrol., 42(2):109-124. doi: 10.1007/BF00371501

Zhang R.Y., Su J.F., Mao H.K., Liou J.G. 1999. Magnetite lamellae in olivine and clinogumite from Dabie UHP ultramafic rocks, central China. Am. Mineral., 84:564-569.




DOI: http://dx.doi.org/10.17072/psu.geol.29.44

Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2015 D. E. Saveliev, I. A. Blinov

URL лицензии: http://creativecommons.org/licenses/by/3.0/