To the Problem of the Clay Particles Energy Potential Assessment

V. V. Seredin, T. U. Parshina, G. A. Isaeva

Abstract


Clay is a natural material, which surface of the particles is energetically active. This clay property is widely used in the industry as sorbents. However, clay sorption activity is different for various pollutants, and work aimed to increase their sorption activity is still under way. This work objective was to study the pressure influences on the activity of the clay particles surface. The experiments showed that increase of pressure results in the decrease in the content of clay minerals, while other minerals change in different manner. It has been statistically proved that pressures P = 125 MPa and P = 750 MPa are bounding values that allows identifying the three classes. The first class is related to the pressures under 125 MPa, the second comprises the range from 125 MPa to 750 MPa, and the third class is for the pressures above 750 MPa. In each class, the intensity and direction of the proceeding of processes of mineral clay composition alteration have specific features. Based on theoretical and experimental studies it was established that the less the value of indicator Mk, the higher the energy potential of the particle surface. It achieves the maximum values (Mk = 14.7) in montmorillonite clay under pressure of 125 MPa, and, conversely, with an increase in pressure up to 2200 MPa the Mk value decreases (Mk = 17.7). A different behavior was observed in kaolinite clay. The energy potential on the particle surface increases with an increase in pressure from Mk = 26.3 to Mk = 18.8 (P = 2000 MPa). Mathematical models, which make it possible to predict energy potential on the surface of montmorillonite and kaolinite particles depending on the pressure, have been developed based on the found statistical relations

Keywords


kaolinite and montmorillonite clay; surface energy of particles; high pressure

References


Gorbunov N.I., Tsyurupa I.G., Shurygina E.A. 1952. Rentgenogrammy, termogrammy i krivye obezvozhivaniya mineralov, vstrechayushchikhsya v pochvakh i glinakh [Radiograms, thermograms and curves of dehydration of minerals found in soils and clays]. Moscow, AN USSR Publ., p. 187. (in Russian)

Deryagin B.V., Churayev N.V., Muller V.M. 1985. Poverkhnostnyye sily [Surface forces]. Moscow, Nauka, p. 398. (in Russian)

Osipov V.I. 1976. Kristallokhimicheskiye zakonomernosti gidrofilnosti glinistykh mineralov [Crystal-chemical regularities of the hydrophilic nature of clay minerals]. Vestnik of MGU. Seriya 4. Geologiya. 5:107-110. (in Russian)

Osipov V.I., Sokolov V.N. 2013. Gliny i ikh svoystva. Sostav, stroyeniye i formirovaniye svoystv [Clays and their properties. Composition, structure and formation of properties.]. Moscow, GEOS, p. 576. (in Russian)

Pushkareva G.I. 2000. Vliyaniye temperaturnoy obrabotki brusita na ego sorbtsionnye svoystva [Influence of temperature processing of brucite on its sorption properties]. FTPRPI – Physical and technical problems of development of mineral resources. 6:90-93. (in Russian).

Pecharsky V., Zavalij P. 2009. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, p. 744.

Rentgenograficheskiy kolichestvennyy fazovyy analiz (RKFA) glinistykh mineralov (kaolinita, gidroslyudy, montmorillonita). Metodicheskiye rekomendatsii [Quantitative Phase Analysis by X-Ray Diffraction (QPXRD) of clay minerals (kaolinite, illite, montmorillonite). Guidelines], NSOMMI VIMS, 1999. (in Russian)

Sapronova Zh.A., Lesovik V.S., Gomes M.Zh., Shaykhiyeva K.I. 2015. Sorbtsionnye svoystva UF-aktivirovannykh glin Angolskikh mestorozhdeniy [Sorption properties of UV treated clay of Angolan deposits]. Vestnik of KazNRTU, 18(1):91-93. (in Russian)

Seredin V.V., Krasilnikov P.A., Medvedeva N.A. 2017. Izmeneniye elektrokineticheskogo potentsiala glinistykh kolloidov v vodnoy i uglevodorodnoy sredakh. [Change in the electrokinetic potential of clay colloids in the aqueous and hydrocarbon media]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya. 1:66-74 (in Russian)

Seredin V.V., Rastegayev A. V., Panova E. G., Medvedeva N. A. 2017. Changes in PhysicalChemical Properties of Clay under Compression. International Journal of Engineering and Applied Sciences (IJEAS). 4(3):22-29.

Frank-Kamenetskiy V.A. 1983. Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty) [Radiography of the main types of rock-forming minerals (layered and framework silicates)]. Leningrad, Nedra, p. 359 (in Russian)

Shlykov V.G. 2006. Rentgenovskiy analiz mineralnogo sostava dispersnykh gruntov [X-ray analysis of the mineral composition of dispersed soils]. Moscow, GEOS, p. 176. (in Russian)

Shlykov V.G. 2000. Ispolzovaniye strukturnykh kharakteristik glinistykh mineralov dlya otsenki fiziko-khimicheskikh svoystv dispersnykh gruntov [The use of structural characteristics of clay minerals for assessment of physical and chemical properties of dispersed soils]. Geoekologiya. 1:43-52. (in Russian)

Ilić B., Mitrović A., Radonjanin V., Malešev M., Zdujić M. 2016. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Applied Clay Science. 123:173–181.

Zhu X., Zhu Z., Lei X., Yan C. 2016. Defects in structure as the sources of the surface charges of kaolinite. Applied Clay Science. 124125:127–136. doi: 10.1016/j.clay.2016.01.033

Friedlander L.R., Glotch T.D., Phillips B.L., Vaughn J.S., Michalski J.R. 2016. Examining structural and related spectral change in marsrelevant phyllosilicates after experimental impacts between 10-40 Gpa. Clays And Clay Minerals. 64(3):189–209. doi: 10.1346/ CCMN.2016.0640302

Sun D., Zhang L., Zhang B., Li J. 2015. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution. Applied Clay Science. 105-106:207–216. doi: 10.1016/j.clay.2014.12.032

Cora I., Dódony I., Pekker P. 2014. Electron crystallographic study of a kaolinite single crystal. Applied Clay Science. 90:6–10. doi: 10.1016/j.clay.2013.12.034

Stefani V.F., Conceição R.V., Balzaretti N.M., Carniel L.C. 2014. Stability of lanthanumsaturated montmorillonite under high pressure and high temperature conditions. Applied Clay Science. 102:51–59. doi: 10.1016/j.clay.2014.10.012

Lepoitevin M., Janot J.-M., Dejardin P., Balme S., Jaber M., Guégan R., Henn F. BSA and lysozyme adsorption on homoionic montmorillonite: Ifluence of the interlayer cation. Applied Clay Science. 95:396–402. doi:10.1016/j.clay.2014.05.003




DOI: http://dx.doi.org/10.17072/psu.geol.16.4.370

Refbacks

  • There are currently no refbacks.