К вопросу об оценке энергетического потенциала глинистых частиц

V. V. Seredin, T. U. Parshina, G. A. Isaeva

Аннотация


Глины являются природным материалом, поверхность частиц которого энергетически активна. Выбран и обоснован комплексный показатель Мк, характеризующий энергетический потенциал поверхности глинистой частицы: чем меньше значение Мк, тем он выше. В монтмориллонитовой глине при давлениях 125 МПа энергетический потенциал принимает максимальные значения (Мк =14,7), а с увеличением давления до 2200 МПа, наоборот, наблюдается его уменьшение (Мк =17,7). В каолинитовой глине выявлена иная закономерность: с увеличением давления наблюдается рост энергетического потенциала на поверхности частиц от Мк =26,3 (исходная проба) до Мк =18,8 (Р=2000 МПа). На основании выявленных статистических связей разработаны математические модели, позволяющие прогнозировать энергетический потенциал поверхности монтмориллонитовой  и каолинитовой частиц в зависимости от давления.

Ключевые слова


глина каолинитовая и монтмориллонитовая; поверхностная энергия частиц; высокое давление

Полный текст:

PDF

Литература


Gorbunov N.I., Tsyurupa I.G., Shurygina E.A. 1952. Rentgenogrammy, termogrammy i krivye obezvozhivaniya mineralov, vstrechayushchikhsya v pochvakh i glinakh [Radiograms, thermograms and curves of dehydration of minerals found in soils and clays]. Moscow, AN USSR Publ., p. 187. (in Russian)

Deryagin B.V., Churayev N.V., Muller V.M. 1985. Poverkhnostnyye sily [Surface forces]. Moscow, Nauka, p. 398. (in Russian)

Osipov V.I. 1976. Kristallokhimicheskiye zakonomernosti gidrofilnosti glinistykh mineralov [Crystal-chemical regularities of the hydrophilic nature of clay minerals]. Vestnik of MGU. Seriya 4. Geologiya. 5:107-110. (in Russian)

Osipov V.I., Sokolov V.N. 2013. Gliny i ikh svoystva. Sostav, stroyeniye i formirovaniye svoystv [Clays and their properties. Composition, structure and formation of properties.]. Moscow, GEOS, p. 576. (in Russian)

Pushkareva G.I. 2000. Vliyaniye temperaturnoy obrabotki brusita na ego sorbtsionnye svoystva [Influence of temperature processing of brucite on its sorption properties]. FTPRPI – Physical and technical problems of development of mineral resources. 6:90-93. (in Russian).

Pecharsky V., Zavalij P. 2009. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, p. 744.

Rentgenograficheskiy kolichestvennyy fazovyy analiz (RKFA) glinistykh mineralov (kaolinita, gidroslyudy, montmorillonita). Metodicheskiye rekomendatsii [Quantitative Phase Analysis by X-Ray Diffraction (QPXRD) of clay minerals (kaolinite, illite, montmorillonite). Guidelines], NSOMMI VIMS, 1999. (in Russian)

Sapronova Zh.A., Lesovik V.S., Gomes M.Zh., Shaykhiyeva K.I. 2015. Sorbtsionnye svoystva UF-aktivirovannykh glin Angolskikh mestorozhdeniy [Sorption properties of UV treated clay of Angolan deposits]. Vestnik of KazNRTU, 18(1):91-93. (in Russian)

Seredin V.V., Krasilnikov P.A., Medvedeva N.A. 2017. Izmeneniye elektrokineticheskogo potentsiala glinistykh kolloidov v vodnoy i uglevodorodnoy sredakh. [Change in the electrokinetic potential of clay colloids in the aqueous and hydrocarbon media]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya. 1:66-74 (in Russian)

Seredin V.V., Rastegayev A. V., Panova E. G., Medvedeva N. A. 2017. Changes in PhysicalChemical Properties of Clay under Compression. International Journal of Engineering and Applied Sciences (IJEAS). 4(3):22-29.

Frank-Kamenetskiy V.A. 1983. Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty) [Radiography of the main types of rock-forming minerals (layered and framework silicates)]. Leningrad, Nedra, p. 359 (in Russian)

Shlykov V.G. 2006. Rentgenovskiy analiz mineralnogo sostava dispersnykh gruntov [X-ray analysis of the mineral composition of dispersed soils]. Moscow, GEOS, p. 176. (in Russian)

Shlykov V.G. 2000. Ispolzovaniye strukturnykh kharakteristik glinistykh mineralov dlya otsenki fiziko-khimicheskikh svoystv dispersnykh gruntov [The use of structural characteristics of clay minerals for assessment of physical and chemical properties of dispersed soils]. Geoekologiya. 1:43-52. (in Russian)

Ilić B., Mitrović A., Radonjanin V., Malešev M., Zdujić M. 2016. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Applied Clay Science. 123:173–181.

Zhu X., Zhu Z., Lei X., Yan C. 2016. Defects in structure as the sources of the surface charges of kaolinite. Applied Clay Science. 124125:127–136. doi: 10.1016/j.clay.2016.01.033

Friedlander L.R., Glotch T.D., Phillips B.L., Vaughn J.S., Michalski J.R. 2016. Examining structural and related spectral change in marsrelevant phyllosilicates after experimental impacts between 10-40 Gpa. Clays And Clay Minerals. 64(3):189–209. doi: 10.1346/ CCMN.2016.0640302

Sun D., Zhang L., Zhang B., Li J. 2015. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution. Applied Clay Science. 105-106:207–216. doi: 10.1016/j.clay.2014.12.032

Cora I., Dódony I., Pekker P. 2014. Electron crystallographic study of a kaolinite single crystal. Applied Clay Science. 90:6–10. doi: 10.1016/j.clay.2013.12.034

Stefani V.F., Conceição R.V., Balzaretti N.M., Carniel L.C. 2014. Stability of lanthanumsaturated montmorillonite under high pressure and high temperature conditions. Applied Clay Science. 102:51–59. doi: 10.1016/j.clay.2014.10.012

Lepoitevin M., Janot J.-M., Dejardin P., Balme S., Jaber M., Guégan R., Henn F. BSA and lysozyme adsorption on homoionic montmorillonite: Ifluence of the interlayer cation. Applied Clay Science. 95:396–402. doi:10.1016/j.clay.2014.05.003




DOI: http://dx.doi.org/10.17072/psu.geol.16.4.370

Ссылки

  • На текущий момент ссылки отсутствуют.