Collapse-Breccia as a Sign of the Pre-Existing Evaporites (Lower Riphean Satka Suite, South Ural

M. T. Krupenin

Abstract


The presence of pre-existing evaporites in the carbonate unit is considered on example of the Lower Riphean Satka Suite. It is proved by the extensive development of the collapse breccia in the Karagay member of the Upper Satka subsuite. The difference of collapse-breccias from other sedimentary breccias is shown, and the mechanism of their formation due to the bio sulphate reduction processes is proposed. Diagenesis bacterial decomposition of sulphate led to a decrease in the concentration of the sulphates ion in the pore waters and the total dissolution of the gypsum and anhydrite with the formation of the collapse breccia horizons. A low level of oxygenation in the Mesoproterozoic time supported a wide development of biosulphate reduction even in the photic zone of shallow lagoons under conditions of low hydrodynamic activity.

Keywords


collapse-breccia; dolomite; gypsum; Riphean; evaporate; bio sulphate reduction

References


Anfimov L.V., Busygin B.D., Demina L.E. 1983. Satkinskoe mestorozhdenie magnezitov na Yuzhnom Urale [Satka magnesite deposit on the Southern Urals]. Nauka, Moskva, p. 87. (in Russian)

Busygin B.D. 1991. Magnezitovaya formatsiya nizhnego rifeya v Satkinskom rayone na Uzhnom Urale [Magnesite Formation of Lower Riphean in Satka district on the Southern Urals]. Diss. cand.geol.-min.sci. Sverdlovsk. (in Russian)

Garan M.I. 1957. Geologicheskoe stroenie i poleznye iskopaemye Bakalo-Satkinskogo rayona [Geological structure and mineral deposits of Bakal-Satka district]. In: Voprosy razvitiya Bakalskoy rudnoy bazy, Sverdlovsk, UFAN SSSR, pp. 23-55. (in Russian)

Zharkov M.A. 2005. Evolutsiya evaporitov v dokembrii v svyazi s preobrazovaniyami biosfery i khimicheskogo sostava mirovogo okeana. Statya 1. Evapority Arkheya i rannego Proterozoya [Evolution of evaporites in the Precambrian in connection with the transformation of the biosphere and the chemical composition of the world's oceans. Paper 1. Evaporites of the Archean and Early Proterozoic]. Stratigraphy. Geological correlation. 12(2):1929. (in Russian)

Ivanova T.V., Masagutov R.H., Andreev U.V. 2002. Litologicheskie tolshchi-repery v sostave rifeyskikh otlozheniy platformennogo Bashkortostana [Lithological reference units in the composition of Riphean deposits of platform Bashkortostan]. In: Mineralno-syrevaya baza Respubliki Bashkortostan: realnost i perspektiva. Materialy Respublikanskoy nauchnoprakticheskoy konferentsii. Ufa, Tau, pp. 155– 170. (in Russian)

Key L.S., Kroford D.S., Bartli D.K., Kozlov V.I., Sergeeva N.D., Puchkov V.N. 2007. С- i Sr izotopnaya stratigrafiya kak instrument dlya utochnenya vozrasta rifeyskikh otlozhenyy Kamsko-Belskogo avlakogena VostochnoEvropeyskoy platformy [C- and Sr-isotope stratigraphy as a tool to specify the age of the Riphean deposits of the Kamsko-Belsky aulacogene of the East-European Platform]. Stratigraphy. Geological correlation. 1:15–34. (in Russian)

Krupenin M.T., Garaeva A.A., Klukin U.I., Baltybaev Sh.K., Kuznetsov A.B. 2013. Fluidnyy rezhim magnesitovogo metasomatoza na Satkinskikh mestorozhdeniyakh YuzhnoUralskoy provintsii (termokriometriya fluidnykh vklucheniy) [Fluid regime of magnesite metasomatose at the Satka deposits of the South Urals province (thermo-criometry of fluid inclusions)]. Litosfera. 2:120-134. (in Russian)

Krupenin M.T., Michurin S.V. 2018. Indikatornye izotopno-geokhimicheskie kharakteristiki sulfidov iz Satkinskogo magnezitovogo mestorozhdeniya (Yuzhno-Uralskaya provintsiya) [Indicator Isotope–Geochemical Characteristics of Sulfides from the Satka Magnesite Ore Field (South Urals Province)]. Doklady RAN. 478(3): 328–331. (in Russian) doi: 10.7868/S0869565218030179

Krupenin M.T., Prokhaska V. 2005. Evaporitovaya priroda flyuidnykh vklyucheniy v kristallicheskikh magnezitakh satkinskogo tipa [The evaporite nature of fluid inclusions in the Satka type sparry magnesites]. Doklady RAN. 403(5): 661-663. (in Russian)

Krupenin M.T., Hiller V.V., Gulyaeva T.Ya., Petrishcheva V.G. 2011. Autigennyy mikroklin v dolomitakh Satkinskogo rudnogo polya [Authigenic microcline in the dolomites of the Satka ore field]. Vestnik Uralskogo otdeleniya Rossiyskogo mineralogicheskogo obshchestva. 8: 61-67. (in Russian)

Kuznetsov V.G. 1992. Prirodnye rezervuary nefti i gaza karbonatnykh otlozheniy (Natural reservoirs of oil and gas in carbonate deposits). Nedra, Moskva, p. 240. (in Russian)

Kuznetsov A.B., Ovchinnikova G.V., Semikhatov M.A., Gorokhov I.M., Kaurova O.K., Krupenin M.T., Vasileva I.M., Gorokhovskiy B.M., Maslov A.V. 2008. Sr-izotopnaya kharakteristika i Pb-Pb vozrast karbonatnykh porod satkinskoy svity, nizhnerifeyskaya burzyanskaya seriya Yuzhnogo Urala [Sr isotopic characteristic and Pb-Pb age of carbonate rocks of the Satka Suite, Lower Riphean Burzyanskaya seria of the Southern Urals]. Stratigraphy. Geological correlation. 16(2): 16–34. (in Russian)

Maslov A.V. 1997. Osadochnye assotsiatsii rifeya stratotipicheskoy mestnosti (evolyutsiya vzglyadov na usloviya formirovaniya, litofatsialnaya zonalnost) [Sedimentary associations of the Riphean of the stratotype region (evolution of views on the formation conditions, lithofacies zoning)]. Ekaterinburg, IGG UrO RAN, p. 220. (in Russian)

Maslov A.V., Krupenin M.T. 1991. Razrezy rifeya Bashkirskogo megantiklinoriya (zapadnyy sklon yuzhnogo Urala) [The Riphean sections of the Bashkir meganticlinorium (the western slope of the Southern Urals)]. Sverdlovsk, IGG UrO AN SSSR, p. 172. (in Russian)

Maslov A.V., Krupenin M.T., Gareev E.Z. 2003. Indikatory paleoklimata: sopostavlenie vozmozhnostey na primere osadochnykh posledovatelnostey rifeya zapadnogo sklona Yuzhnogo Urala [Indicators of the paleoclimate: comparison of possibility on the example of sedimentary sequences of the Riphean of the western slope of the Southern Urals]. Litologiya i poleznye iskopaemye. 38(5): 427-446. (in Russian)

Maslov A.V., Podkovyrov V.N. 2018. Redoksstatus okeana 2500–500 mln let nazad: sovremennye predstavleniya [Redox status of the ocean 2500-500 million years ago: modern views]. Litologiya i poleznye iskopaemye. 3: 207–231. (in Russian) doi: 10.7868/S0024497X18030023

Michurin S.V., Kovalev S.G., Gorozhanin V.M. 2009. Genezis sulfidov i sulfatov v nizhnerifeyskikh otlozheniyakh Kamsko-Belskogo avlakogena i Bashkirskogo megantiklinoriya [Genesis of sulfides and sulfates in Lower Riphean sediments of the Kamsko-Belskiy Aulacogen and Bashkirskiy mega-anticlinorium]. Ufa, DizaynPoligrafServis, p. 192. (in Russian)

Morozov A.F., Khakhaev B.N., Petrov O.V., Gorbachev V.I., Tarkhanov G.V., Tsvetkov L.D., Yerinchek Ju.M., Akhmedov A.M., Krupenik V.A., Sveshnikova K.Yu. 2010. Tolshcha kamennykh soley v razreze paleo-proterozoya Onezhskogo progiba Karelii (po dannym Onezhskoy parametricheskoy skvazhiny) [Rock salt formation in the Paleoproterozoic section of the Onega Basin of Kareliya (according to the Onega parametric well data)]. Doklady RAN. 435(2): 230-233. (in Russian)

Parnachev V.P. 1987. Ftor i khlor v pozdnedokembriyskikh osadochnykh porodakh Bashkirskogo megantiklinoriya v svyazi s voprosami ikh sedimentogeneza [Fluorine and chlorine in the Late Precambrian sedimentary rocks of the Bashkirskiy mega-anticlinorium in connection with their sedimentogenesis]. In: Geokhimiya vulkanicheskikh i osadochnykh porod Yuzhnogo Urala. Sverdlovsk, UNC AN SSSR, pp. 35-46. (in Russian)

Sidorenkov A.I. 1964. Novye dannye po litostratigrafii verkhney chasti razreza satkinskoy svity [New data on lithostratigraphy of the upper part of the Satka Suite]. Geologiya i poleznye iskopaemye Urala. Tr. SGI. 45: 1424. (In Russian)

Sidkina E.S. 2015. Rassoly zapadnoy chasti Tungusskogo artezianskogo basseyna [Brines of the western part of the Tunguska Artesian Basin]. Geokhimiya. 8: 743-756. (in Russian) doi: 10.7868/ S0016752515080087

Stratotip rifeya. Stratigrafiya. Geokhronologiya. [Stratotype of Riphean. Stratigraphy. Geochronology]. Nauka, Moskva, 1983, p. 184 (in Russian)

Chuvashov B.I. 1968. Istoriya razvitiya i bionomicheskaya kharakteristika pozdnedevonskogo basseyna na zapadnom sklone Srednego i Yuzhnogo Urala [The history of development and the bionomical characteristic of the Late Devonian basin on the western slope of the Middle and Southern Urals]. Nauka, Moskva, p. 132. (in Russian)

Shvartsev S.L. 1973. Istochniki kaltsiya, strontsiya i bariya krepkikh i sverkhkrepkikh rassolov khloridno-kaltsievogo tipa [Sources of calcium, strontium and barium of strong and superstrong brines of the chloride-calcium type]. Geologiya i geofizika. 6: 23-30. (in Russian)

Brasier M.D., Lindsay J.F. 1998. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 26(6): 555-558.

Haneef M., Wardlaw B.R. 2000. Lithofacies and Deposition history of the Tessey Formation, Frenchman Hills, West Texas. In: The Guadeloupian symposium. B.R. Wardlaw, R.E. Grant and D.M. Rohr, Eds. Smithsonian Institution Press, Washington, D.C., pp. 373-380.

Johnston D.T., Wolfe-Simon F., Pearson A., and Knoll A.H. 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Nat. Acad. Sci. USA. 106(40): 16925–16929. doi: 10.1073/pnas. 0909248106

Kah L.C., Lyons T.W. and Chesley J.T. 2001. Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambrian Research. 111(1-4): 203234. doi: 10.1016/S0301-9268(01)00161-9

Lyons T.W., Reinhard C.T., Planavsky N.J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 506: 307-315. doi: 10.1038/nature13068

Melezhik V.A., Fallick A.E., Medvedev P.V., Makarikhin V.V. 2001. Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology. 48: 379-397.

Sloss L.L., Laird W.M. 1947. Devonian system in central and northwestern Montana. AAPG Bull., 31: 1404-1430.

Sperling E.A., Rooney A.D., Hays L., Sergeev V. N., Vorobyeva N.G., Sergeeva N.D., Selby D., Johnston D.T. and Knoll A.H. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12: 373–386. doi: 10.1111/gbi.12091

Stewart A.J. 1979. A barred-basin marine evaporite in the Upper Proterozoic of the Amadeus Basin, central Australia. Sedimentology. 26: 33-62.

The Precambrian Earth: Tempos and Events. 2004. Eds P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu. Developments in Precambrian Geology. V. 12 (K.C. Condie, Series Ed.). Amsterdam, Boston, Tokyo, Elsevier, p. 941.

Wright D. T., Kirkham A. 2010. The role of bacterial sulphate reduction in carbonate replacement of vanished evaporites: examples from the Holocene, Jurassic and Neoarchean. In: SP43 - Quaternary carbonate and evaporite sedimentary facies and their ancient analogues. Christopher G. St C. Kendall, Abdulrahman Alsharhan Eds. Wiley, pp. 362-379.




DOI: http://dx.doi.org/10.17072/psu.geol.17.4.342

Refbacks

  • There are currently no refbacks.